Skip to main content
Log in

On quantitative uniqueness for elliptic equations

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We address the question of quantitative uniqueness for the equation \(\Delta u=V u\) with either periodic or Dirichlet boundary conditions in a disk. We construct solutions u corresponding to potential functions V such that u vanishes of order \(\mathrm{const} \Vert V\Vert _{L^\infty }^{2/3}\). The example also shows sharpness of recently obtained bounds in the case of a parabolic equation \(u_t-\Delta u= V u\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Agmon, S.: Unicité et convexité dans les problémes différentiels, Séminaire de Mathématiques Supérieures, No. 13 (Été, 1965), Les Presses de l’Université de Montréal, Montreal (1966)

  2. Agmon, S., Nirenberg, L.: Lower bounds and uniqueness theorems for solutions of differential equations in a Hilbert space. Commun. Pure Appl. Math. 20, 207–229 (1967)

    Article  MathSciNet  MATH  Google Scholar 

  3. Alessandrini, G., Escauriaza, L.: Null-controllability of one-dimensional parabolic equations. ESAIM Control Optim. Calc. Var. 14(2), 284–293 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  4. Alessandrini, G., Morassi, A., Rosset, E., Vessella, S.: On doubling inequalities for elliptic systems. J. Math. Anal. Appl. 357(2), 349–355 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  5. Almgren Jr. F.J.: Dirichlet’s problem for multiple valued functions and the regularity of mass minimizing integral currents. In: Minimal submanifolds and geodesics (Proc. Japan-United States Sem., Tokyo, 1977), pp. 1–6. North-Holland, Amsterdam (1979)

  6. Aronszajn, N.: A unique continuation theorem for solutions of elliptic partial differential equations or inequalities of second order. J. Math. Pures Appl. 36(9), 235–249 (1957)

    MathSciNet  MATH  Google Scholar 

  7. Alessandrini, G., Vessella, S.: Local behaviour of solutions to parabolic equations. Commun. Partial Differ. Equ. 13(9), 1041–1058 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bakri, L., Casteras, J.-B.: Quantitative uniqueness for Schrödinger operator with regular potentials. Math. Methods Appl. Sci. 37(13), 1992–2008 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  9. Bakri, L.: Carleman estimates for the Schrödinger operator. Applications to quantitative uniqueness. Commun. Partial Differ. Equ. 38(1), 69–91 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bakri, L.: Quantitative uniqueness for Schrödinger operator. Indiana Univ. Math. J. 61(4), 1565–1580 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Bourgain, J., Kenig, C.E.: On localization in the continuous Anderson–Bernoulli model in higher dimension. Invent. Math. 161(2), 389–426 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  12. Camliyurt, G., Kukavica, I.: A local asymptotic expansion for a solution of the Stokes system. Evol. Equ. Control Theory 5, 647–659 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  13. Camliyurt, G., Kukavica, I.: Quantitative unique continuation for a parabolic equation. Indiana Univ. Math. J. 67(2), 657–678 (2018)

  14. Canuto, B., Rosset, E., Vessella, S.: Quantitative estimates of unique continuation for parabolic equations and inverse initial-boundary value problems with unknown boundaries. Trans. Am. Math. Soc. 354(2), 491–535 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  15. Carleman, T.: Sur un problème d’unicité pur les systèmes d’équations aux dérivées partielles à deux variables indépendantes. Ark. Mat., Astr. Fys 26(17), 9 (1939)

    MathSciNet  MATH  Google Scholar 

  16. Cordes, H.O.: über die eindeutige Bestimmtheit der Lösungen elliptischer Differentialgleichungen durch Anfangsvorgaben. Nachr. Akad. Wiss. Göttingen. Math.-Phys. Kl. IIa. 1956, 239–258 (1956)

    MathSciNet  MATH  Google Scholar 

  17. Donnelly, H., Fefferman, C.: Nodal sets of eigenfunctions on Riemannian manifolds. Invent. Math. 93(1), 161–183 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  18. Escauriaza, L.: Carleman inequalities and the heat operator. Duke Math. J. 104(1), 113–127 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  19. Escauriaza, L., Fernández, F.J.: Unique continuation for parabolic operators. Ark. Mat. 41(1), 35–60 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  20. Escauriaza, L., Fernández, F.J., Vessella, S.: Doubling properties of caloric functions. Appl. Anal. 85(1–3), 205–223 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  21. Escauriaza, L., Vega, L.: Carleman inequalities and the heat operator. II. Indiana Univ. Math. J. 50(3), 1149–1169 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  22. Escauriaza, L., Vessella, S.: Optimal three cylinder inequalities for solutions to parabolic equations with Lipschitz leading coefficients. In: Inverse problems: theory and applications (Cortona/Pisa, 2002), Contemp. Math., vol. 333, pp. 79–87. Amer. Math. Soc. Providence (2003)

  23. Garofalo, N., Lin, F.-H.: Monotonicity properties of variational integrals, \(A_p\) weights and unique continuation. Indiana Univ. Math. J. 35(2), 245–268 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  24. Hörmander, L.: Uniqueness theorems for second order elliptic differential equations. Commun. Partial Differ. Equ. 8(1), 21–64 (1983)

    Article  MathSciNet  MATH  Google Scholar 

  25. Ignatova, M., Kukavica, I.: Strong unique continuation for higher order elliptic equations with Gevrey coefficients. J. Differ. Equ. 252(4), 2983–3000 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  26. Jerison, D., Kenig, C.E.: Unique continuation and absence of positive eigenvalues for Schrödinger operators. Ann. Math. (2) 121(3), 463–494 (1985). (With an appendix by E.M. Stein)

    Article  MathSciNet  MATH  Google Scholar 

  27. Kenig, C.E.: Restriction theorems, Carleman estimates, uniform Sobolev inequalities and unique continuation. In: Harmonic analysis and partial differential equations (El Escorial, 1987), Lecture Notes in Math., vol. 1384, pp. 69–90. Springer, Berlin (1989)

  28. Kenig, C.E.: Some recent applications of unique continuation. In: Recent developments in nonlinear partial differential equations, Contemp. Math., vol. 439, pp. 25–56. Amer. Math. Soc., Providence (2007)

  29. Kenig, C.E.: Quantitative unique continuation, logarithmic convexity of Gaussian means and Hardy’s uncertainty principle. In: Perspectives in partial differential equations, harmonic analysis and applications, Proc. Sympos. Pure Math., vol. 79, pp. 207–227. Amer. Math. Soc., Providence (2008)

  30. Kenig, C.E., Nadirashvili, N.: A counterexample in unique continuation. Math. Res. Lett. 7(5–6), 625–630 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  31. Kenig, C., Silvestre, L., Wang, J.-N.: On Landis’ conjecture in the plane. Commun. Partial Differ. Equ. 40(4), 766–789 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  32. Kukavica, I.: Quantitative uniqueness for second-order elliptic operators. Duke Math. J. 91(2), 225–240 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  33. Kukavica, I.: Quantitative uniqueness and vortex degree estimates for solutions of the Ginzburg–Landau equation. Electron. J. Differ. Equ. 2000(61), 15 (2000). (electronic)

    MathSciNet  MATH  Google Scholar 

  34. Kukavica, I.: Self-similar variables and the complex Ginzburg–Landau equation. Commun. Partial Differ. Equ. 24(3–4), 545–562 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  35. Kurata, K.: On a backward estimate for solutions of parabolic differential equations and its application to unique continuation. In: Spectral and scattering theory and applications, Adv. Stud. Pure Math., vol. 23, pp. 247–257. Math. Soc. Japan, Tokyo (1994)

  36. Koch, H., Tataru, D.: Carleman estimates and unique continuation for second-order elliptic equations with nonsmooth coefficients. Commun. Pure Appl. Math. 54(3), 339–360 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  37. Koch, H., Tataru, D.: Carleman estimates and unique continuation for second order parabolic equations with nonsmooth coefficients. Commun. Partial Differ. Equ. 34(4–6), 305–366 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  38. Koch, H., Tataru, D.: Sharp counterexamples in unique continuation for second order elliptic equations. J. Reine Angew. Math. 542, 133–146 (2002)

    MathSciNet  MATH  Google Scholar 

  39. Lin, F.-H.: Nodal sets of solutions of elliptic and parabolic equations. Commun. Pure Appl. Math. 44(3), 287–308 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  40. Mandache, N.: A counterexample to unique continuation in dimension two. Commun. Anal. Geom. 10(1), 1–10 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  41. Meshkov, V.Z.: On the possible rate of decrease at infinity of the solutions of second-order partial differential equations. Mat. Sb. 182(3), 364–383 (1991)

    MATH  Google Scholar 

  42. Poon, C.-C.: Unique continuation for parabolic equations. Commun. Partial Differ. Equ. 21(3–4), 521–539 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  43. Sogge, C.D.: Strong uniqueness theorems for second order elliptic differential equations. Am. J. Math. 112(6), 943–984 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  44. Sogge, C.D.: A unique continuation theorem for second order parabolic differential operators. Ark. Mat. 28(1), 159–182 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  45. Vessella, S.: Carleman estimates, optimal three cylinder inequalities and unique continuation properties for parabolic operators. In: Progress in analysis (Berlin, 2001), vols. I, II, pp. 485–492. World Sci. Publ., River Edge (2003)

  46. Wolff, T.H.: Note on counterexamples in strong unique continuation problems. Proc. Am. Math. Soc. 114(2), 351–356 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  47. Wolff, T.H.: Recent work on sharp estimates in second order elliptic unique continuation problems. In: Fourier analysis and partial differential equations (Miraflores de la Sierra, 1992), Stud. Adv. Math., pp. 99–128. CRC, Boca Raton (1995)

  48. Wolff, T.H.: A counterexample in a unique continuation problem. Commun. Anal. Geom. 2(1), 79–102 (1994)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgements

The authors were supported in part by the NSF Grant DMS-1615239.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Igor Kukavica.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Camliyurt, G., Kukavica, I. & Wang, F. On quantitative uniqueness for elliptic equations. Math. Z. 291, 227–244 (2019). https://doi.org/10.1007/s00209-018-2081-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-018-2081-6

Navigation