Mathematische Zeitschrift

, Volume 291, Issue 1–2, pp 113–147 | Cite as

Spherical subcategories in representation theory

  • Andreas HocheneggerEmail author
  • Martin Kalck
  • David Ploog


We introduce a new invariant for triangulated categories: the poset of spherical subcategories ordered by inclusion. This yields several numerical invariants, like the cardinality and the height of the poset. We explicitly describe spherical subcategories and their poset structure for derived categories of certain finite-dimensional algebras.


Spherical object Spherelike object Spherical subcategory Spherelike poset Derived invariant Cluster-tilting Finite-dimensional algebra Quiver 

Mathematics Subject Classification

16E35 16G20 18E30 



We are grateful to Gustavo Jasso and Yanki Lekili for discussion and comments. Moreover, we thank Matthew Pressland for suggesting how to generalise Lemma 3.27 to Remark 3.29. Finally we want to thank the anonymous referees for valuable comments. Martin Kalck is grateful for the support by DFG Grant Bu-1886/2-1 and EPSRC Grant EP/L017962/1.


  1. 1.
    Amiot, C.: The derived category of surface algebras: the case of torus with one boundary component. Algebr. Represent. Theory 19, 1059–1080 (2016). arXiv:1506.02410 MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Assem, I., Simson, D., Skowroński, A.: Elements of the Representation Theory of Associative Algebras: Volume 1. Cambridge University Press, Cambridge (2006)CrossRefzbMATHGoogle Scholar
  3. 3.
    Beilinson, A.A., Bernstein, J., Deligne, P.: Faisceaux pervers. In: Analysis and Topology on Singular Spaces I (Luminy, 1981) Astérisque, vol. 100, pp. 5–171. Société Mathématique de France, Paris (1982)Google Scholar
  4. 4.
    Bobiński, G.: Derived equivalence classification of gentle two-cycle algebras. Algebr. Represent. Theory 20, 857–869 (2017). arXiv:1509.08631 MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Bobiński, G., Geiß, C., Skowroński, A.: Classification of discrete derived categories. Cent. Eur. J. Math. 2, 19–49 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  6. 6.
    Bridgeland, T., Stern, D.: Helices on del Pezzo surfaces and tilting Calabi–Yau algebras. Adv. Math. 224, 1672–1716 (2010). arXiv:0909.1732 MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Broomhead, N., Pauksztello, D., Ploog, D.: Discrete derived categories I—Homomorphisms, autoequivalences and t-structures. Math. Z. 285, 39–89 (2017). arXiv:1312.5203 MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Broomhead, N.: Thick subcategories of discrete derived categories. arXiv:1608.06904
  9. 9.
    Buan, A.B., Marsh, R., Reineke, M., Reiten, I., Todorov, G.: Tilting theory and cluster combinatorics. Adv. Math. 210, 51–82 (2007). arXiv:math/0402054 MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Buan, A.B., Iyama, O., Reiten, I., Scott, J.: Cluster structures for 2-Calabi–Yau categories and unipotent groups. Compos. Math 145, 1035–1079 (2009). arXiv:math/0701557 MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Burban, I., Drozd, Y.: Tilting on non-commutative rational projective curves. Math. Ann. 351, 665–709 (2011). arXiv:0905.1231 MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Burban, I., Iyama, O., Keller, B., Reiten, I.: Cluster tilting for one-dimensional hypersurface singularities. Adv. Math. 217, 2443–2484 (2008). arXiv:0704.1249 MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Burban, I., Kalck, M.: The relative singularity category of a noncommutative resolution of singularities. Adv. Math. 231, 414–435 (2012). arXiv:1103.3936 MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Chen, X.-W., Krause, H.: Expansions of abelian categories. J. Pure Appl. Algebra 215, 2873–2883 (2011). arXiv:1009.3456 MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Cline, E., Pashall, B., Scott, L.: Finite dimensional algebras and highest weight categories. J. Reine Angew. Math. 391, 85–99 (1988)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Geigle, W., Lenzing, H.: A class of weighted projective curves arising in representation theory of finite dimensional algebras. In: Greuel, G.-M., Trautmann, G. (eds.) Singularities, Representation of Algebras and Vector Bundles, pp. 265–297. Springer, Berlin (1987)CrossRefGoogle Scholar
  17. 17.
    Geiss, C., Leclerc, B., Schröer, J.: Cluster algebra structures and semicanonical bases for unipotent groups. arXiv:math/0703039v4
  18. 18.
    Haiden, F., Katzarkov, L., Kontsevich, M.: Flat surfaces and stability structures. Publ. Math. IHES 216, 247–318 (2017). arXiv:1409.8611 MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Happel, D.: Triangulated categories in the representation theory of finite dimensional algebras. Cambridge University Press, Cambridge (1988)CrossRefzbMATHGoogle Scholar
  20. 20.
    Hille, L., Perling, M.: Tilting bundles on rational surfaces and quasi-hereditary algebras. Ann. Inst. Fourier 64, 625–644 (2014). arXiv:1110.5843 MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Hochenegger, A., Kalck, M., Ploog, D.: Spherical subcategories in algebraic geometry. Math. Nachr. 289, 1450–1465 (2016). arXiv:1208.4046 MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Hochenegger, A., Ploog, D.: Rigid divisors on surfaces. (2018). arXiv:1607.08198
  23. 23.
    Huybrechts, D.: Fourier–Mukai Transforms in Algebraic Geometry. Oxford University Press, Oxford (2006)zbMATHGoogle Scholar
  24. 24.
    Igusa, K., Liu, Sh, Paquette, Ch.: A proof of the strong no loop conjecture. Adv. Math. 228, 2731–2742 (2011). arXiv:1103.5361 MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Iyama, O.: Cluster-tilting for higher Auslander algebras. Adv. Math. 226, 1–61 (2011). arXiv:0809.4897 MathSciNetCrossRefzbMATHGoogle Scholar
  26. 26.
    Iyama, O., Yoshino, Y.: Mutation in triangulated categories and rigid Cohen–Macaulay modules. Invent. math. 172, 117–168 (2008). arXiv:math/0607736 MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Kalck, M.: Derived categories of quasi-hereditary algebras and their derived composition series. In: Krause, H., Littelmann, P., Malle, G., Neeb, K.-H., Schweigert, C. (eds.) Representation Theory—Current Trends and Perspectives, EMS Series of Congress Reports, pp. 269–308 (2017). arXiv:1603.06490
  28. 28.
    Keller, B.: On triangulated orbit categories. Doc. Math. 10, 551–581 (2005). arXiv:math/0503240 MathSciNetzbMATHGoogle Scholar
  29. 29.
    Keller, B., Reiten, I.: Cluster-tilted algebras are Gorenstein and stably Calabi-Yau. Adv. Math. 211, 123–151 (2007). arXiv:math/0512471 MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Keller, B., Yang, D., Zhou, G.: The Hall algebra of a spherical object. J. Lond. Math. Soc. 80, 771–784 (2009). arXiv:0810.5546 MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Koitabashi, M.: Automorphism groups of generic rational surfaces. J. Algebra 116, 130–142 (1988)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Kuznetsov, A.: A simple counterexample to the Jordan–Hölder property for derived categories. arXiv:1304.0903
  33. 33.
    Lekili, Y., Polishchuk, A.: Auslander orders over nodal stacky curves and partially wrapped Fukaya categories. J. Topology. arXiv:1705.06023 (to appear)
  34. 34.
    Li, L.: Derived equivalences between triangular matrix algebras. Commun. Algebra 46, 615–628 (2018). arXiv:1311.1258 MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Meltzer, H.: Tubular mutations. Colloq. Math. 74, 267–274 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Miyachi, J.-I.: Recollement and Idempotent Ideals. Tsukuba J. Math. 16, 545–550 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Oort, F.: Yoneda extensions in abelian categories. Math. Annalen 153, 227–235 (1964)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Orlov, D.O.: Derived categories of coherent sheaves and triangulated categories of singularities. In: Tschinkel, Y. (ed.) Algebra, arithmetic, and geometry, vol. II, pp. 503–531. Birkhäuser, Basel (2009). arXiv:math/0503632 CrossRefGoogle Scholar
  39. 39.
    Orlov, D.O.: Triangulated categories of singularities and equivalences between Landau–Ginzburg models. Sb. Math. 197, 1827–1840 (2006). arXiv:math/0503630 MathSciNetCrossRefzbMATHGoogle Scholar
  40. 40.
    Ringel, C.M.: The canonical algebras (with an appendix by W. Crawley-Boevey). Banach Cent. Publ. 26, 407–432 (1988)CrossRefzbMATHGoogle Scholar
  41. 41.
    Rudakov, A.N., et al.: Helices and Vector Bundles. Cambridge University Press, Cambridge (1990)CrossRefzbMATHGoogle Scholar
  42. 42.
    Seidel, P.: More about vanishing cycles and mutation. In: Fukaya, K., Oh, Y.-G., Ono, K., Tian, G. (eds.) Symplectic Geometry and Mirror Symmetry, pp. 429–465. World Scientific, Singapore (2001). arXiv:math/0010032 CrossRefGoogle Scholar
  43. 43.
    Seidel, P., Thomas, R.: Braid group actions on derived categories of coherent sheaves. Duke Math. J. 108, 37–108 (2001). arXiv:math/0001043 MathSciNetCrossRefzbMATHGoogle Scholar
  44. 44.
    Skowroński, A.: Generalized canonical algebras and standard stable tubes. Colloq. Math. 90, 77–93 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  45. 45.
    Vossieck, D.: The algebras with discrete derived category. J. Algebra 243, 168–176 (2001)MathSciNetCrossRefzbMATHGoogle Scholar
  46. 46.
    Wiedemann, A.: On stratifications of derived module categories. Canad. Bull. Math. 34, 275–280 (1991)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag GmbH Germany, part of Springer Nature 2018

Authors and Affiliations

  • Andreas Hochenegger
    • 1
    Email author
  • Martin Kalck
    • 2
  • David Ploog
    • 3
  1. 1.Dipartimento di Matematica “Federigo Enriques”Università degli Studi di MilanoMilanItaly
  2. 2.School of MathematicsUniversity of EdinburghEdinburghUK
  3. 3.Institut für Algebra und GeometrieOtto-von-Guericke Universität MagdeburgMagdeburgDeutschland

Personalised recommendations