Skip to main content
Log in

Roe \(C^*\)-algebra for groupoids and generalized Lichnerowicz vanishing theorem for foliated manifolds

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We introduce the concept of Roe \(C^*\)-algebra for a locally compact groupoid whose unit space is in general not compact, and that is equipped with an appropriate coarse structure and Haar system. Using Connes’ tangent groupoid method, we introduce an analytic index for an elliptic differential operator on a Lie groupoid equipped with additional metric structure, which takes values in the K-theory of the Roe \(C^*\)-algebra. We apply our theory to derive a Lichnerowicz type vanishing result for foliations on open manifolds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

Notes

  1. If \(\mathsf {G}\) is a Lie groupoid, the family should be assumed smooth: just replace continuous functions by smooth functions everywhere.

  2. It is a norm rather than a semi-norm as the measures \(\mu ^x\) have full support.

References

  1. Anantharaman-Delaroche, C.: Exact Groupoids. arXiv:1605.05117 (2016)

  2. Atiyah, M., Singer, I.: The index of elliptic operators I. Ann. Math. 87(3), 484–530 (1968)

    Article  MathSciNet  Google Scholar 

  3. Benameur, M., Heitsch, J.: Enlargeability, foliations, and positive scalar curvature. arXiv:1703.02684 (2017)

  4. Berger, M.: A panoramic view of Riemannian geometry. Springer, Berlin, Heidelberg, New York (2003)

    Book  Google Scholar 

  5. Connes, A.: Sur la théorie non commutative de l’intégration. (French) Algèbres d’opérateurs (Sém., Les Plans-sur-Bex, 1978), pp. 19–143, Lecture Notes in Math., 725, Springer, Berlin (1979)

    Google Scholar 

  6. Connes, A.: Cyclic cohomology and the transverse fundamental class of a foliation, Geometric methods in operator algebras (Kyoto, 1983), pp. 52–144, Pitman Res. Notes Math. Ser., 123, Longman Sci. Tech., Harlow (1986)

  7. Connes, A.: Noncommutative Geometry. Academic Press, San Diego (1994)

    MATH  Google Scholar 

  8. Connes, A., Skandalis, G.: The longitudinal index theorem for foliations. Publ. Res. Inst. Math. Sci. 20(6), 1139–1183 (1984)

    Article  MathSciNet  Google Scholar 

  9. Gong, G., Wang, Q., Yu, G.: Geometrization of the strong Novikov conjecture for residually finite groups. J. Reine Angew. Math. 621, 159–189 (2008)

    MathSciNet  MATH  Google Scholar 

  10. Higson, N., Pedersen, E., Roe, J.: \(C^*\)-algebras and controlled topology. K-Theory 11(3), 209–239 (1997)

    Article  MathSciNet  Google Scholar 

  11. Hilsum, H., Skandalis, G.: Morphismes K-orientés d’espaces de feuilles et fonctorialité en théorie de Kasparov (d’après une conjecture d’A. Connes), Ann. Sci. École Norm. Sup. (4) 20, 325–390 (1987)

    Article  MathSciNet  Google Scholar 

  12. Hörmander, L.: The Analysis of Linear Partial Differential Operators III. Springer, Berlin Heidelberg, Pseudo-Differential Operators (1994)

  13. Lichnerowicz, A.: Spineurs harmoniques. C. R. Acad. Sci. Paris, Série A 257, 7–9 (1963)

    MathSciNet  MATH  Google Scholar 

  14. Liu, Z.: A Lichnerowicz vanishing theorem for proper cocompact actions. arXiv:1310.4903 (2013)

  15. Monthubert, B., Pierrot, F.: Indice analytique et groupoides de Lie. C. R. Acad. Sci. Paris Sér. I Math. 325(2), 193–198 (1997)

    Article  MathSciNet  Google Scholar 

  16. Nistor, V., Weinstein, A., Xu, P.: Pseudodifferential operators on differential groupoids. Pac. J. Math. 189(1), 117–152 (1999)

    Article  MathSciNet  Google Scholar 

  17. Pedersen, G.: \(C^*\)-algebras and their automorphism groups. Academic Press, London (1979)

    MATH  Google Scholar 

  18. Pflaum, M., Posthuma, H., Tang, X.: The localized longitudinal index theorem for Lie groupoids and the van Est map. Adv. Math. 270(3), 223–262 (2015)

    Article  MathSciNet  Google Scholar 

  19. Renault, J.: A groupoid approach to \(C^*\)-algebras. Lecture notes in mathematics, vol. 793. Springer-Verlag, Berlin, Heidelberg, New York (1980)

  20. Renault, J.: \({C}^*\)-algebras and dynamical systems, Publicações Mathemáticas do IMPA, 27\(^\circ \) Colóquio Brasileiro de Matemática, Instituto Nacional de Matemática Pura e Aplicada (2009)

  21. Roe, J.: An index theorem on open manifolds. I, II. J. Differ. Geom. 27(1), 87–113, 115–136 (1988)

  22. Roe, J.: Index theory, coarse geometry, and topology of manifolds, CBMS Conference Proceedings 90. American Mathematical Society, Providence (1995)

  23. Roe, J.: Lectures on Coarse Geometry, University Lecture Series 31. American Mathematical Society, Providence (2003)

    Google Scholar 

  24. Segal, G.: Equivariant K-theory. Inst. Hautes Études Sci. Publ. Math. 34, 129–151 (1968)

    Article  MathSciNet  Google Scholar 

  25. Skandalis, G., Tu, J.-L., Yu, G.: The coarse Baum–Connes conjecture and groupoids. Topology 41, 807–834 (2002)

    Article  MathSciNet  Google Scholar 

  26. Sobolev, A. V.: Pseudo-differential operators with discontinuous symbols: Widom’s conjecture, Mem. Am. Math. Soc.222, 1043 (2013)

    Article  MathSciNet  Google Scholar 

  27. Tu, J.-L.: The coarse Baum–Connes conjecture and groupoids II. N. Y. J. Math. 18, 1–27 (2012)

    MathSciNet  MATH  Google Scholar 

  28. Zhang, W.: Positive scalar curvature on foliations. Ann. Math. (2) 185(3), 1035–1038 (2017)

    Article  MathSciNet  Google Scholar 

  29. Zhang, W.: A note on the Lichnerowicz vanishing theorem for proper actions. J. Noncommut. Geom. 11(3), 823–826 (2017)

    Article  MathSciNet  Google Scholar 

Download references

Acknowledgements

Tang’s research and Willett’s research are partially supported by the US NSF (DMS1363250, DMS1401126 and DMS1564281). Yao’s research is partially supported by the NSFC (11522107, 11231002 and 11420101001). We would like to thank Jerome Kaminker, Guoliang Yu, and Weiping Zhang for helpful suggestions and encouragement. The first two authors would like to thank the Shanghai Center for Mathematical Sciences for hosting their visits, where the main part of the work was done.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yi-Jun Yao.

Appendix

Appendix

In this Appendix, we prove the following lemma. Such a result is known to experts, but we could not find a suitable reference so include a proof here for the reader’s convenience.

Lemma 6.1

Let \(\iota \), \(\kappa \), r, and R be positive constants, and d a positive integer. Then for any \(R>0\), there exists \(m\in \mathbb {N}\) depending only on \(\iota , \kappa , r, R\), and d with the following property. Let M be a d-dimensional complete Riemannian manifold with all sectional curvatures in the interval \([-\kappa , \kappa ]\) and injectivity radius bounded below by \(\iota \). There exists a cover \(\mathcal {U}\) of M by balls of radius r such that for any \(U\in \mathcal {U}\) there are at most m balls \(V\in \mathcal {U}\) with

$$\begin{aligned} V\cap N_R(U)\ne \varnothing , \end{aligned}$$

where \(N_R(U):=\{y\in M | d(y, U)<R\}\). Moreover, if \(r<\iota \), then each \(U\in \mathcal {U}\) is diffeomorphic to \({\mathbb {R}}^d\).

Proof

Using Zorn’s lemma, we can choose a maximal subset Z of M such that \(d(x,y)\ge r\) for all \(x,y\in Z\). Let

$$\begin{aligned} {\mathcal U}:=\{B(z; r) \mid z\in Z\}, \end{aligned}$$

where B(zr) is the geodesic ball center at z with radius r. If \(r<\iota \), each B(zr) is diffeomorphic to an open ball in \(\mathbb {R}^d\) via the exponential map. Note that as Z is maximal, the union of B(zr) in \({\mathcal U}\) must cover the whole M, and so \({\mathcal U}\) is an open cover of M.

Fix \(U=B(z; r)\in {\mathcal U}\), and let \(S_z\) be the set of \(y\in Z\) such that

$$\begin{aligned} B(y;r)\cap B(z; R+r)\ne \varnothing . \end{aligned}$$

We consider the collection of B(yr / 2) for \(y\in S_z\). The triangle inequality shows that for all \(y\in S_z\),

$$\begin{aligned} B(z; R+3r)\supseteq B(y; r)\supseteq B(y; r/2). \end{aligned}$$

Furthermore, as the points in \(S_z\) are at least r-distance apart, the sets \(\{B(y;r/2)\mid y\in S_z\}\) are mutually disjoint. Hence we have the following inclusion

$$\begin{aligned} B(z; R+3r)\supseteq \bigsqcup _{z_i\in S_z} B(z_i; r/2). \end{aligned}$$

By the Bishop-Gromov theorem [4, Theorem 107, P. 310], there is a constant \(C>0\) depending only only \(\kappa \), d, and \(R+3r\) such that

$$\begin{aligned} {\text {Volume}}(B(z; R+3r))\le C. \end{aligned}$$

On the other hand, a standard result in comparison theory [4, Theorem 103, P. 306] gives us a constant \(c>0\) depending only on r, \(\kappa \), \(\iota \) and d such that

$$\begin{aligned} {\text {Volume}}(B(y; r/2))\ge {\text {Volume}}(B(y;\min (r/2,\iota ))\ge c, \end{aligned}$$

for each \(y\in S_z\).

Combing these two volume bounds, we see that

$$\begin{aligned} C\ge {\text {Volume}}(B(z; R+3r)) \ge {\text {Volume}}\left( \bigsqcup _{y\in S_z}B(y; r/2)\right) \ge |S_z| c. \end{aligned}$$

We conclude that \(|S_z|\le C/c\), and note that C / c only depends on \(\iota \), \(\kappa \), R, r, and d. We choose m to be an integer greater than or qual to C / c, and therefore complete the proof.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, X., Willett, R. & Yao, YJ. Roe \(C^*\)-algebra for groupoids and generalized Lichnerowicz vanishing theorem for foliated manifolds . Math. Z. 290, 1309–1338 (2018). https://doi.org/10.1007/s00209-018-2064-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-018-2064-7

Keywords

Mathematics Subject Classification

Navigation