Skip to main content

Checkerboard style Schur multiple zeta values and odd single zeta values


We give explicit formulas for the recently introduced Schur multiple zeta values, which generalize multiple zeta(-star) values and which assign to a Young tableaux a real number. In this note we consider Young tableaux of various shapes, filled with alternating entries like a Checkerboard. In particular we obtain new sum representation for odd single zeta values in terms of these Schur multiple zeta values. As a special case we show that some Schur multiple zeta values of Checkerboard style, filled with 1 and 3, are given by determinants of matrices with odd single zeta values as entries.

This is a preview of subscription content, access via your institution.


  1. Andrews, G.E., Askey, R.A., Berndt, B.C., Ramanathan, R.G., Rankin, R.A. (eds.): R.J. Evan Ramanujan’s second notebook: asymptotic expansions for hypergeometric series and related functions. In: Ramanujan Revisited: Proceedings of the Centenary Conference (University of Illinois at Urbana-Champaign), pp. 537–560. Academic Press, Boston (1988)

  2. Bachmann, H.: Interpolated Schur multiple zeta values. J. Aust. Math. Soc. 2017, 1–19 (2017).

    Article  Google Scholar 

  3. Borwein, J., Bradley, D., Broadhurst, D.: Combinatorial aspects of multiple zeta value. Electron. J. Combin. 5, 1–12 (1998)

    MathSciNet  MATH  Google Scholar 

  4. Borwein, J., Bradley, D., Broadhurst, D., Lisonek, P.: Special values of multiple polylogarithms. Trans. Am. Math. Soc. 353(3), 907–941 (2001)

    MathSciNet  Article  Google Scholar 

  5. Bowman, D., Bradley, D.: Resolution of some open problems concerning multiple zeta evaluations of arbitrary depth. Compos. Math. 139(1), 85–100 (2003)

    MathSciNet  Article  Google Scholar 

  6. Haynes, A., Zudilin, W.: Hankel determinants of zeta values. SIGMA Symmetry Integrability Geom. Methods Appl. 11(101), 1–5 (2015)

    MathSciNet  MATH  Google Scholar 

  7. Kaneko, M., Yamamoto, S.: A new integral-series identity of multiple zeta values and regularizations (2016). Preprint arXiv:1605.03117

  8. Monien, H.: Hankel determinants of Dirichlet series (2009). Preprint arXiv:0901.1883

  9. Muneta, S.: On some explicit evaluations of multiple zeta-star values. J. Number Theory 128(9), 2538–2548 (2008)

    MathSciNet  Article  Google Scholar 

  10. Nakasuji, M., Phuksuwan, O., Yamasaki, Y.: On Schur multiple zeta functions: a combinatoric generalization of multiple zeta functions (2017). Preprint arXiv:1704.08511

  11. Yee, A.J.: A new shuffle convolution for multiple zeta values. J. Algebraic Comb. 21(1), 55–69 (2005)

    MathSciNet  Article  Google Scholar 

Download references


The authors would like to thank Don Zagier for his ideas on parts of the proof of Theorem 3.5, Wadim Zudilin for helpful discussion on the topic, Steven Charlton for corrections and calculations in Section 5 and the Max-Planck-Institut für Mathematik in Bonn for hospitality and support.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Henrik Bachmann.

Additional information

Y. Yamasaki is partially supported by JSPS Grant-in-Aid for Scientific Research (C) No. 15K04785.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Bachmann, H., Yamasaki, Y. Checkerboard style Schur multiple zeta values and odd single zeta values. Math. Z. 290, 1173–1197 (2018).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


  • Multiple zeta values
  • Schur functions
  • Jacobi–Trudi formula
  • Hypergeometric functions
  • Hankel determinants

Mathematics Subject Classification

  • 11M41
  • 05E05
  • 33C05