Skip to main content
Log in

High-dimensional metric-measure limit of Stiefel and flag manifolds

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We study the high-dimensional limit of (projective) Stiefel and flag manifolds as metric measure spaces in Gromov’s topology. The limits are either the infinite-dimensional Gaussian space or its quotient by some mm-isomorphic group actions, which are drastically different from the manifolds. As a corollary, we obtain some asymptotic estimates of the observable diameter of (projective) Stiefel and flag manifolds.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Billingsley, P.: Convergence of probability measures, 2nd ed., Wiley Series in Probability and Statistics: Probability and Statistics, John Wiley & Sons Inc., New York, 1999. A Wiley-Interscience Publication

  2. Bogachev, V.I.: Measure theory, vol. I, II. Springer, Berlin (2007)

    Book  Google Scholar 

  3. Burago, D., Burago, Y., Ivanov, S.: A course in metric geometry, Graduate Studies in Mathematics, vol. 33. American Mathematical Society, Providence, RI (2001)

  4. Cai, T., Fan, J., Jiang, T.: Distributions of angles in random packing on spheres. J. Mach. Learn. Res. 14, 1837–1864 (2013)

    MathSciNet  MATH  Google Scholar 

  5. Gromov, M.: Metric structures for Riemannian and non-Riemannian spaces, Reprint of the 2001 English edition, Modern Birkhäuser Classics, Birkhäuser Boston Inc., Boston, MA, 2007. Based on the 1981 French original; with appendices by M. Katz, P. Pansu and S. Semmes; Translated from the French by Sean Michael Bates

  6. Gromov, M., Milman, V.D.: A topological application of the isoperimetric inequality. Am. J. Math. 105(4), 843–854 (1983)

    Article  MathSciNet  Google Scholar 

  7. Kechris, A.S.: Classical descriptive set theory, graduate texts in mathematics, vol. 156. Springer, New York (1995)

    Book  Google Scholar 

  8. Ledoux, M.: The concentration of measure phenomenon, Mathematical Surveys and Monographs, vol. 89. American Mathematical Society, Providence, RI (2001)

  9. Lévy, P.: Problèmes concrets d’analyse fonctionnelle. Avec un complément sur les fonctionnelles analytiques par F. Pellegrino, 2nd edn. Gauthier-Villars, Paris (1951). (French)

    MATH  Google Scholar 

  10. Li, R.C.: A perturbation bound for the generalized polar decomposition. BIT 33(2), 304–308 (1993)

    Article  MathSciNet  Google Scholar 

  11. Milman, V.D.: Asymptotic properties of functions of several variables that are defined on homogeneous spaces, Dokl. Akad. Nauk SSSR 199, 1247–1250 (1971) (Russian); English transl., Soviet Math. Dokl. 12, 1277–1281 (1971)

  12. Milman, V.D.: A certain property of functions defined on infinite-dimensional manifolds. Dokl. Akad. Nauk SSSR 200, 781–784 (1971). (Russian)

    MathSciNet  Google Scholar 

  13. Milman, V.D.: The heritage of P. Lévy in geometrical functional analysis, Astérisque 157-158, 273–301 (1988). Colloque Paul Lévy sur les Processus Stochastiques (Palaiseau, 1987)

  14. Milman, V.D., Schechtman, G.: Asymptotic theory of finite-dimensional normed spaces, Lecture Notes in Mathematics, vol. 1200, Springer-Verlag, Berlin, 1986. With an appendix by M. Gromov

  15. Ozawa, R., Shioya, T.: Limit formulas for metric measure invariants and phase transition property. Math. Z. 280(3–4), 759–782 (2015)

    Article  MathSciNet  Google Scholar 

  16. Shioya, T.: Metric measure geometry–Gromov’s theory of convergence and concentration of metrics and measures, IRMA Lectures in Mathematics and Theoretical Physics, vol. 25, European Mathematical Society (2016)

  17. Shioya, T.: Metric measure limits of spheres and complex projective spaces, Measure Theory in Non-Smooth Spaces (N. Gigli, ed.), Partial Differential Equations and Measure Theory, De Gruyter, pp. 261–287 (2017)

    Google Scholar 

  18. Watson, G.S.: Limit theorems on high-dimensional spheres and Stiefel manifolds, studies in econometrics, time series, and multivariate statistics, pp. 559–570. Academic Press, New York (1983)

    Google Scholar 

  19. Zhang, F.: Quaternions and matrices of quaternions. Linear Algebra Appl. 251, 21–57 (1997)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Takashi Shioya.

Additional information

This work was supported by JSPS KAKENHI Grant Numbers 26400060, 15K17536, 15H05739.

A. Appendix: \(U^F(N)\) as a subgroup of \(U^\mathbb {R}(N^F)\)

A. Appendix: \(U^F(N)\) as a subgroup of \(U^\mathbb {R}(N^F)\)

For \(z:=z_0+z_1{\mathrm{i}}+z_2{\mathrm{j}}+z_3{\mathrm{k}}\in F^N\), we set

$$\begin{aligned} {{\mathrm{R}}}(z):=z_0,\quad {{\mathrm{I}}}(z):=z_1,\quad {{\mathrm{J}}}(z):=z_2,\quad {{\mathrm{K}}}(z):=z_3. \end{aligned}$$

It follows that for \(z:=z_0+z_1{\mathrm{i}}+z_2{\mathrm{j}}+z_3{\mathrm{k}}, w:=w_0+w_1{\mathrm{i}}+w_2{\mathrm{j}}+w_3{\mathrm{k}}\in F^N\),

$$\begin{aligned} \left\langle { \begin{pmatrix} z_0\\ z_1 \\ z_2 \\ z_3 \end{pmatrix}},{\begin{pmatrix} w_0\\ w_1 \\ w_2 \\ w_3 \end{pmatrix}}\right\rangle =\sum _{l=0}^3 z_lw_l ={\mathrm{Re}}\left\langle {z},{w}\right\rangle . \end{aligned}$$

Lemma A.1

Define a map \({\mathcal {O}}^F: U^F(N) \hookrightarrow \mathrm {M}_{N^F}(\mathbb {R})\) by

$$\begin{aligned} {\mathcal {O}}^{F}(U) \begin{pmatrix} z_0\\ z_1 \\ z_2 \\ z_3 \end{pmatrix} := \begin{pmatrix} {{\mathrm{R}}}(Uz)\\ {{\mathrm{I}}}(Uz)\\ {{\mathrm{J}}}(Uz)\\ {{\mathrm{K}}}(Uz)) \end{pmatrix}, \end{aligned}$$

for \(z_0,z_1,z_2,z_3 \in \mathbb {R}^N\), where \(z:=z_0+z_1{\mathrm{i}}+z_2{\mathrm{j}}+z_3{\mathrm{k}}\in F^N\). Then we have for \(U, V \in U^F(N)\),

$$\begin{aligned} {\mathcal {O}}^{F}(U) \in U^\mathbb {R}(N^F), \quad {\mathcal {O}}^{F}(UV)={\mathcal {O}}^{F}(U){\mathcal {O}}^{F}(V), \quad {\mathcal {O}}^{F}(U^*)={\mathcal {O}}^{F}(U)^*. \end{aligned}$$

Proof

For any \(z:=z_0+z_1{\mathrm{i}}+z_2{\mathrm{j}}+z_3{\mathrm{k}}, w:=w_0+w_1{\mathrm{i}}+w_2{\mathrm{j}}+w_3{\mathrm{k}}\in F^N\) and \(U,V \in U^F(N)\), we compute that

$$\begin{aligned} \left\langle {{\mathcal {O}}^{F}(U) \begin{pmatrix} z_0\\ z_1 \\ z_2 \\ z_3 \end{pmatrix}},{ {\mathcal {O}}^{F}(U) \begin{pmatrix} z_0\\ z_1 \\ z_2 \\ z_3 \end{pmatrix}}\right\rangle ={\mathrm{Re}}\left\langle {Uz},{Uw}\right\rangle ={\mathrm{Re}}\left\langle {z},{w}\right\rangle = \left\langle { \begin{pmatrix} z_0\\ z_1 \\ z_2 \\ z_3 \end{pmatrix}},{\begin{pmatrix} w_0\\ w_1 \\ w_2 \\ w_3 \end{pmatrix}}\right\rangle ,\\ {\mathcal {O}}^{F}(UV) \begin{pmatrix} z_0\\ z_1 \\ z_2 \\ z_3 \end{pmatrix} = \begin{pmatrix} {\mathrm{Re}}(UVz)\\ {{\mathrm{I}}}(UVz)\\ {{\mathrm{J}}}(UVz)\\ {{\mathrm{K}}}(UVz) \end{pmatrix} = {\mathcal {O}}^{F}(U) \begin{pmatrix} {\mathrm{Re}}(Vz)\\ {{\mathrm{I}}}(Vz)\\ {{\mathrm{J}}}(Vz)\\ {{\mathrm{K}}}(Vz) \end{pmatrix} = {\mathcal {O}}^{F}(U) {\mathcal {O}}^{F}(V) \begin{pmatrix} z_0\\ z_1 \\ z_2 \\ z_3 \end{pmatrix}, \end{aligned}$$

implying the first two claims. We also find that \({\mathcal {O}}^{F}(I_N)=I_{N^F}\). This implies that

$$\begin{aligned} {\mathcal {O}}^{F}(U)^*{\mathcal {O}}^{F}(U)=I_N = {\mathcal {O}}^{F}(U^*U) = {\mathcal {O}}^{F}(U^*) {\mathcal {O}}^{F}(U), \end{aligned}$$

hence \({\mathcal {O}}^{F}(U^*)={\mathcal {O}}^{F}(U)^*\). This completes the proof. \(\square \)

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Shioya, T., Takatsu, A. High-dimensional metric-measure limit of Stiefel and flag manifolds. Math. Z. 290, 873–907 (2018). https://doi.org/10.1007/s00209-018-2044-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-018-2044-y

Keywords

Mathematics Subject Classification

Navigation