Skip to main content
Log in

Localization theorem for higher arithmetic K-theory

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

Quillen’s localization theorem is well known as a fundamental theorem in the study of algebraic K-theory. In this paper, we present its arithmetic analogue for the equivariant K-theory of arithmetic schemes, which are endowed with an action of certain diagonalisable group scheme. This equivariant arithmetic K-theory is defined by means of a natural extension of Burgos–Wang’s simplicial description of Beilinson’s regulator map to the equivariant case. As a byproduct of this work, we give an analytic refinement of the Riemann–Roch theorem for higher equivariant algebraic K-theory. And as an application, we prove a higher arithmetic concentration theorem which generalizes Thomason’s corresponding result in purely algebraic case to the context of Arakelov geometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bismut, J.-M.: Equivariant immersions and Quillen metrics. J. Differ. Geom. 41, 53–157 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bousfield, A.K., Kan, D.M.: Homotopy limits, completions and localizations. Lecture Notes Math. 304. Springer (1972)

  3. Burgos, J.I., Kramer, J., Kühn, U.: Cohomological arithmetic Chow rings. J. Inst. Math. Jussieu 6, 1–172 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bloch, S., Ogus A.: Gersten’s conjectures and the homology of schemes. Ann. Sci. Ecole Norm. Sup. 7, 4ème série, 181–202 (1974)

  5. Burgos, J.I.: Aritjmetic Chow rings and Deligne–Beilinson cohomology. J. Alg. Geom. 6, 335–377 (1997)

    MATH  Google Scholar 

  6. Burgos, J.I., Wang, S.: Higher Bott–Chern forms and Beilinson’s regulator. Invent. Math. 132, 261–305 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  7. Deligne, P.: Le déterminant de la cohomologie. Conterporary Math. 67, 93–177 (1987)

    MATH  Google Scholar 

  8. Feliu, E.: Adams operations on higher arithmetic K-theory. Publ. RIMS Kyoto Univ. 46, 115–169 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gillet, H.: Riemann–Roch theorems for higher algebraic K-theory. Adv. Math. 40, 203–289 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  10. Gillet, H., Soulé, C.: Arithmetic intersection theory. Publ. Math. IHES 72, 94–174 (1990)

    Article  MATH  Google Scholar 

  11. Gillet, H., Soulé, C.: Characteristic classes for algebraic vector bundles with hermitian metrics I, II. Ann. Math. 131(1990), 163–203 and 205–238

  12. Holmstrom, A., Scholbach, J.: Arakelov motivic cohomology I. To appear in Journal of Algebraic Geometry. arXiv:1012.2523v3 [math.NT]

  13. Jannsen, U.: Deligne homology, Hodge-D-conjecture and motives. In: Beilinson’s conjectures on special values of L-functions. Perspectives in Math. vol. 4, Academic Press, pp. 305–372 (1988)

  14. Köck, B.: The Lefschetz theorem in higher equivariant \(K\)-theory. Comm. Algebra 19, 3411–3422 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  15. Köhler, K., Roessler, D.: A fixed point formula of Lefschetz type in Arakelove geometry I: statement and proof. Invent. Math 145(2), 333–396 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lelong, P.: Intégration sur un ensemble analytique complexe. Bull. Soc. Math. France 95, 239–262 (1957)

    Article  MATH  Google Scholar 

  17. McCarthy, R.: A chain complex for the spectrum homology of the algebraic K-theory of an exact category. Algebraic K-theory, Fields Inst. Commun. Am. Math. Soc., Providence 16, 199–220 (1997)

  18. May, J.P., Ponto, K.: More Concise Algebraic Topology: Localization, completion, and model categories, Chicago Lectures in Math. Univ. Chicago Press, London (2012)

    MATH  Google Scholar 

  19. Milnor, J.: On spaces having the homotopy type of a CW complex. Trans. A.M.S 90, 272–280 (1959)

    MathSciNet  MATH  Google Scholar 

  20. Roessler, D.: Analytic torsion for cubes of vector bundles and Gillet’s Riemann–Roch theorem. J. Algebraic Geom. 8, 497–518 (1999)

    MathSciNet  MATH  Google Scholar 

  21. Schechtman, V. V.: On the delooping of Chern character and Adams operations. In: K-theory, arithmetic and geometry. LNM 1289, 265–319 Springer-Verlag (1987)

  22. Scholbach, J.: Arakelov motivic cohomology II. To appear in Journal of Algebraic Geometry. arXiv:1205.3890v2 [math.AG]

  23. Soulé, C., et al.: Lectures on Arakelov geometry. Cambridge Studies in advanced mathematics 33, Cambridge university Press (1992)

  24. Tang, S.: Concentration theorem and relative fixed point formula of Lefschetz type in Arakelov geometry. J. Reine Angew. Math. 665, 207–235 (2012)

    MathSciNet  MATH  Google Scholar 

  25. Takada, Y.: Higher arithmetic K-theory. Publ. Res. Inst. Math. Sci. 41, 599–681 (2005)

    Article  MathSciNet  Google Scholar 

  26. Thomason, R.: Algebraic K-theory of group scheme actions. In: Algebraic Topology and Algebraic K-theory. Ann. Math. Stud. 113, 539-563. Princeton Univ. Press, Princeton (1987)

  27. Thomason, R.: Une formule de Lefschetz en K-théorie équivariante algébrique. Duke Math. J. 68, 447–462 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  28. Thomason, R., Trobaugh, T.: Higher algebraic K-theory of schemes and of derived categories. In: The Grothendieck Festschrift, Vol. III, Progress in Mathematics 88, 247–435, Birkhäuser, Boston, MA (1990)

  29. Waldhausen, F.: Algebraic K-theory of spaces. In: Algebraic and geometric topology. LNM, Springer-Berlin, 1126, 318–419 (1980)

Download references

Acknowledgements

The author would like to thank Damian Roessler for his careful reading of an early version of this paper and for his valuable comments. He would also like to thank the referee for his/her hard work and helpful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shun Tang.

Additional information

This work was partially supported by NSFC (no. 11631009).

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Tang, S. Localization theorem for higher arithmetic K-theory. Math. Z. 290, 307–346 (2018). https://doi.org/10.1007/s00209-017-2019-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-017-2019-4

Keywords

Mathematics Subject Classification

Navigation