Skip to main content
Log in

Strictly commutative complex orientation theory

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

For a multiplicative cohomology theory E, complex orientations are in bijective correspondence with multiplicative natural transformations to E from complex bordism cohomology MU. If E is represented by a spectrum with a highly structured multiplication, we give an iterative process for lifting an orientation \(MU \rightarrow E\) to a map respecting this extra structure, based on work of Arone–Lesh. The space of strictly commutative orientations is the limit of an inverse tower of spaces parametrizing partial lifts; stage 1 corresponds to ordinary complex orientations, and lifting from stage \((m-1)\) to stage m is governed by the existence of an orientation for a family of E-modules over a fixed base space \(F_m\). When E is p-local, we can say more. We find that this tower only changes when m is a power of p, and if E is E(n)-local the tower is constant after stage \(p^n\). Moreover, if the coefficient ring \(E^*\) is p-torsion free, the ability to lift from stage 1 to stage p is equivalent to a condition on the associated formal group law that was shown necessary by Ando.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ando, M., Blumberg, A., Gepner, D. Hopkins, M., Rezk, C.: Units of ring spectra and thom spectra. arXiv:0810.4535

  2. Ando, M., Blumberg, A., Gepner, D.J., Hopkins, M.J., Rezk, C.: Units of ring spectra, orientations and Thom spectra via rigid infinite loop space theory. J. Topol. 7(4), 1077–1117 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ando, M., Hopkins, M.J., Rezk, C.: Multiplicative orientations of \(KO\)-theory and of the spectrum of topological modular forms. Preprint. http://www.math.uiuc.edu/~mando/papers/koandtmf.pdf

  4. Ando, M., Hopkins, M.J., Strickland, N.P.: The sigma orientation is an \(H_\infty \) map. Am. J. Math. 126(2), 247–334 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  5. Arone, G., Lesh, K.: Filtered spectra arising from permutative categories. J. Reine Angew. Math. 604, 73–136 (2007)

    MathSciNet  MATH  Google Scholar 

  6. Arone, G.Z., Lesh, Kathryn: Augmented \(\Gamma \)-spaces, the stable rank filtration, and a \(bu\) analogue of the Whitehead conjecture. Fund. Math. 207(1), 29–70 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  7. Ando, M.: Operations in complex-oriented cohomology theories related to subgroups of formal groups, Ph.D. thesis, M.I.T. (1992)

  8. Ando, M.: Isogenies of formal group laws and power operations in the cohomology theories \(E_n\). Duke Math. J. 79(2), 423–485 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  9. Ando, M.: Power operations in elliptic cohomology and representations of loop groups. Trans. Am. Math. Soc. 352(12), 5619–5666 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  10. Bruner, R.R., May, J.P., McClure, J.E., Steinberger, M.: \(H_\infty \) ring spectra and their applications. In: Lecture Notes in Mathematics, vol. 1176. Springer, Berlin (1986)

  11. Baker, A., Richter, B.: Some properties of the Thom spectrum over loop suspension of complex projective space. In: An Alpine Expedition Through Algebraic Topology, Contemp. Math., vol. 617, pp. 1–12. Amer. Math. Soc., Providence, RI (2014)

  12. Hopkins, M.J., Kuhn, N.J., Ravenel, D.C.: Generalized group characters and complex oriented cohomology theories. J. Am. Math. Soc. 13(3), 553–594 (2000). (electronic)

    Article  MathSciNet  MATH  Google Scholar 

  13. Hopkins, M.J., Mahowald, M., Sadofsky, H.: Constructions of Elements in Picard Groups, Topology and Representation Theory (Evanston, IL, 1992), Contemp. Math., vol. 158, pp. 89–126. American Mathematical Society, Providence, RI (1994)

  14. Johnson, N., Noel, J.: For complex orientations preserving power operations, \(p\)-typicality is atypical. Topol. Appl. 157(14), 2271–2288 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  15. Lazarev, A.: Homotopy theory of \(A_{\infty }\) ring spectra and applications to MU-modules. \(K\)-theory 24(3), 243–281 (2001)

  16. Lawson, T., Naumann, N.: Strictly commutative realizations of diagrams over the Steenrod algebra and topological modular forms at the prime 2. Int. Math. Res. Not. IMRN 10, 2773–2813 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  17. May, J.P.: The Geometry of Iterated Loop Spaces, Vol. 271, Lecture Notes in Mathematics. Springer, Berlin (1972)

    Book  Google Scholar 

  18. May, J.P.: \(E_{\infty }\) ring spaces and \(E_{\infty }\) ring spectra, Lecture Notes in Mathematics, Vol. 577. Springer, Berlin (1977) (With contributions by Frank Quinn, Nigel Ray, and Jørgen Tornehave)

  19. Möllers, J.-D.: \(K(1)\)-local complex \(E_\infty \)-orientations, Ph.D. thesis. Ruhr-Universität Bochum (2010)

  20. Mathew, A., Stojanoska, V.: The Picard group of topological modular forms via descent theory. Geom. Topol. 20(6), 3133–3217 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  21. Quillen, D.: Elementary proofs of some results of cobordism theory using Steenrod operations. Adv. Math. 7(1971), 29–56 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  22. Rezk, C.: Lectures on power operations. http://www.math.uiuc.edu/~rezk/papers.html

  23. Rognes, J.: A spectrum level rank filtration in algebraic \(K\)-theory. Topology 31(4), 813–845 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  24. Ravenel, D.C., Wilson, W.S.: The Morava \(K\)-theories of Eilenberg–Mac Lane spaces and the Conner–Floyd conjecture. Am. J. Math. 102(4), 691–748 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  25. Snaith, V.P.: A stable decomposition of \(\Omega ^{n}S^{n}X\). J. Lond. Math. Soc. (2) 7, 577–583 (1974)

    Article  MATH  Google Scholar 

  26. Walker, B.J.: Multiplicative orientations of K-Theory and p-adic analysis, ProQuest LLC, Ann Arbor, MI, Thesis (Ph.D.)–University of Illinois at Urbana-Champaign (2008)

  27. Zhu, Y.: Norm coherence for descent of level structures on formal deformations. arXiv:1706.03445

Download references

Acknowledgements

The authors would like to thank Greg Arone and Kathryn Lesh for discussions related to this material, to Andrew Baker, Eric Peterson, and Nathaniel Stapleton for their comments, and to Jeremy Hahn for locating an error in the previous version of this paper.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tyler Lawson.

Additional information

Michael J. Hopkins partially supported by NSF Grant DMS-0906194.

Tyler Lawson partially supported by NSF Grant DMS-1206008.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Hopkins, M.J., Lawson, T. Strictly commutative complex orientation theory. Math. Z. 290, 83–101 (2018). https://doi.org/10.1007/s00209-017-2009-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-017-2009-6

Navigation