Skip to main content
Log in

Iterated spans and classical topological field theories

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We construct higher categories of iterated spans, possibly equipped with extra structure in the form of higher-categorical local systems, and classify their fully dualizable objects. By the Cobordism Hypothesis, these give rise to framed topological quantum field theories, which are the framed versions of the classical topological quantum field theories considered in the quantization programme of Freed–Hopkins–Lurie–Teleman. Using this machinery, we also construct an \((\infty ,1)\)-category of symplectic derived algebraic stacks and Lagrangian correspondences and show that all its objects are dualizable.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Atiyah, M.: Topological quantum field theories. Inst. Hautes Études Sci. Publ. Math. 68(1988), 175–186 (1989)

    MathSciNet  MATH  Google Scholar 

  2. Baez, J.C., Dolan, J.: Higher-dimensional algebra and topological quantum field theory. J. Math. Phys. 36(11), 6073–6105 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  3. Barwick, C.: \((\infty ,n)\)-Cat as a Closed Model Category, Thesis (Ph.D.) University of Pennsylvania (2005)

  4. Barwick, C.: On the \(Q\)-Construction for Exact \(\infty \)-Categories (2013). arXiv:1301.4725

  5. Barwick, C.: From Operator Categories to Topological Operads (2013). arXiv:1302.5756

  6. Barwick, C.: Spectral Mackey functors and equivariant algebraic \(K\)-theory (I). Adv. Math. 304, 646–727 (2017). arXiv:1404.0108

    Article  MathSciNet  MATH  Google Scholar 

  7. Barwick, C., Glasman, S., Shah, J.: Spectral Mackey Functors and Equivariant Algebraic K-Theory (II) (2016). arXiv:1505.03098

  8. Barwick, C., Schommer-Pries, C.: On the Unicity of the Homotopy Theory of Higher Categories (2011). arXiv:1112.0040

  9. Boardman, J.M., Vogt, R.M.: Homotopy invariant algebraic structures on topological spaces. Lecture Notes in Mathematics, vol. 347. Springer, Berlin (1973)

  10. Calaque, D.: Lagrangian structures on mapping stacks and semi-classical TFTs, Stacks and categories in geometry, topology, and algebra, Contemp. Math., vol. 643, pp. 1–23. Am. Math. Soc., Providence, RI (2015). arXiv:1306.3235

  11. Calaque, D., Scheimbauer, C.: A Note on the \((\infty ,n)\)-Category of Cobordisms (2015). arXiv:1509.08906

  12. Dugger, D., Spivak, D.I.: Mapping spaces in quasi-categories. Algebr. Geom. Topol. 11(1), 263–325 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  13. Dyckerhoff, T., Kapranov, M.: Higher Segal Spaces I (2012). arXiv:1212.3563

  14. Freed, D.S.: Higher algebraic structures and quantization. Commun. Math. Phys. 159(2), 343–398 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  15. Freed, D.S., Hopkins, M.J., Lurie, J., Teleman, C.: Topological quantum field theories from compact Lie groups, A celebration of the mathematical legacy of Raoul Bott, , CRM Proc. Lecture Notes, vol. 50, pp. 367–403. Am. Math. Soc., Providence, RI (2010)

  16. Gepner, D., Haugseng, R.: Enriched \(\infty \)-categories via non-symmetric \(\infty \)-operads. Adv. Math. 279, 575–716 (2015). arXiv:1312.3178

    Article  MathSciNet  MATH  Google Scholar 

  17. Gepner, D., Haugseng, R., Nikolaus, T.: Lax colimits and free fibrations in \(\infty \)-categories. Doc. Math. 22, 1225–1266 (2017). arXiv:1501.02161

    MathSciNet  MATH  Google Scholar 

  18. Grandis, M.: Higher cospans and weak cubical categories (Cospans in algebraic topology, I). Theory Appl. Categ. 18(12), 321–347 (2007)

    MathSciNet  MATH  Google Scholar 

  19. Groth, M.: A Short Course on \(\infty \)-Categories (2015). arXiv:1007.2925

  20. Grothendieck, A.: Revêtements étales et groupe fondamental, Séminaire de Géométrie Algébrique, 1960/61. Institut des Hautes Études Scientifiques, Paris (1963)

  21. Haugseng, R.: Rectifying enriched \(\infty \)-categories. Algebr. Geom. Topol. 15, 1931–1982 (2015). arXiv:1312.3178

    Article  MathSciNet  MATH  Google Scholar 

  22. Haugseng, R.: Bimodules and natural transformations for enriched \(\infty \)-categories. Homol. Homot. Appl. 18, 71–98 (2016). arXiv:1506.07341

    Article  MathSciNet  MATH  Google Scholar 

  23. Haugseng, R.: The higher Morita category of \(E_{n}\)-algebras. Geom. Topol. 21, 631–1730 (2017). arXiv:1412.8459

    Article  MathSciNet  MATH  Google Scholar 

  24. Hoffnung, A.E.: Spans in 2-Categories: a Monoidal Tricategory (2013). arXiv:1112.0560

  25. Johnson-Freyd, T., Scheimbauer, C.: (Op)lax natural transformations, twisted quantum field theories, and “even higher” Morita categories. Adv. Math. 307, 147–223 (2017). arXiv:1502.06526

    Article  MathSciNet  MATH  Google Scholar 

  26. Joyal, A., Tierney, M.: Quasi-categories vs Segal spaces. In: Categories in Algebra, Geometry and Mathematical Physics, Contemp. Math., vol. 431, pp. 277–326. American Mathematical Society, Providence, RI (2007). arXiv:math/0607820

  27. Joyal, A.: The theory of quasi-categories and its applications, Advanced course on simplicial methods in higher categories, CRM Quaderns, pp. 45-2 (2008). http://mat.uab.cat/~kock/crm/hocat/advanced-course/Quadern45-2.pdf

  28. Lawrence, R.J.: Triangulations, categories and extended topological field theories, Quantum topology, Ser. Knots Everything, vol. 3, pp. 191–208. World Sci. Publ., River Edge (1993)

  29. Li-Bland, D.: The Stack of Higher Internal Categories and Stacks of Iterated Spans (2015). arXiv:1506.08870

  30. Lurie, J.: Higher Topos Theory, Annals of Mathematics Studies, vol. 170. Princeton University Press, Princeton (2009). http://math.harvard.edu/~lurie/papers/highertopoi.pdf

  31. Lurie, J.: (\(\infty \),2)-Categories and the Goodwillie Calculus I (2009). http://math.harvard.edu/~lurie/papers/GoodwillieI.pdf

  32. Lurie, J.: On the classification of topological field theories, Current developments in mathematics, 2008, pp. 129–280. Int. Press, Somerville (2009). http://math.harvard.edu/~lurie/papers/cobordism.pdf

  33. Lurie, J.: Higher Algebra (2017). http://math.harvard.edu/~lurie/

  34. Mazel-Gee, A.: A User’s Guide to Co/cartesian Fibrations (2015). arXiv:1510.02402

  35. Morton, J.C.: Double bicategories and double cospans. J. Homotopy Relat. Struct. 4(1), 389–428 (2009). arXiv:math/0611930

    MathSciNet  MATH  Google Scholar 

  36. Morton, J.C.: Two-vector spaces and groupoids. Appl. Categ. Struct. 19(4), 659–707 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  37. Morton, J.C.: Cohomological twisting of 2-linearization and extended TQFT. J. Homotopy Relat. Struct. 10(2), 127–187 (2015). arXiv:1003.5603

    Article  MathSciNet  MATH  Google Scholar 

  38. Nuiten, J: Cohomological Quantization of Local Prequantum Boundary Field Theory (2013). http://ncatlab.org/schreiber/show/master+thesis+Nuiten

  39. Pantev, T., Toën, B., Vaquié, M., Vezzosi, G.: Shifted symplectic structures. Publ. Math. Inst. Hautes Études Sci. 117, 271–328 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  40. Rezk, C.: A model for the homotopy theory of homotopy theory. Trans. Am. Math. Soc. 353(3), 973–1007 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  41. Rezk, C.: A Cartesian presentation of weak \(n\)-categories. Geom. Topol. 14(1), 521–571 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  42. Rezk, C: Stuff About Quasicategories (2017). http://www.math.uiuc.edu/~rezk/595-fal16/quasicats.pdf

  43. Riehl, E., Verity, D.: Homotopy coherent adjunctions and the formal theory of monads. Adv. Math. 286, 802–888 (2016). arXiv:1310.8279

    Article  MathSciNet  MATH  Google Scholar 

  44. Schommer-Pries, C.J.: The Classification of Two-Dimensional Extended Topological Field Theories (2014). arXiv:1112.1000

  45. Schreiber, U.: Differential Cohomology in a Cohesive \(\infty \)-Topos (2013). arXiv:1310.7930

  46. Schreiber, U.: Quantization Via Linear Homotopy Types (2014). arXiv:1402.7041

  47. Schreiber, U: Classical Field Theory Via Cohesive Homotopy Types (2014). http://ncatlab.org/schreiber/show/Classical+field+theory+via+Cohesive+homotopy+types

  48. Stay, M.: Compact closed bicategories. Theory Appl. Categ. 31, 755–798 (2016). arXiv:1301.1053

    MathSciNet  MATH  Google Scholar 

  49. Toën, B., Vezzosi, G.: Homotopical algebraic geometry II: geometric stacks and applications. Mem. Am. Math. Soc 193, 902 (2008). arXiv:math/0404373

    MathSciNet  MATH  Google Scholar 

  50. Weinstein, A.: Symplectic geometry. Bull. Am. Math. Soc. (N.S.) 5(1), 1–13 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  51. Weinstein, A.: The symplectic “category”, differential geometric methods in mathematical physics (Clausthal, 1980): Lecture Notes in Math., vol. 905, pp. 45–51. Springer, Berlin (1982)

Download references

Acknowledgements

I first learned about \(\infty \)-categories of spans from conversations with Clark Barwick back in 2010. The present work was inspired by a number of discussions during my visit to the MSRI programme on algebraic topology in the spring of 2014, in particular with Hiro Tanaka and Owen Gwilliam. I also thank Oren Ben-Bassat, Damien Calaque, Theo Johnson-Freyd, Gregor Schaumann, Claudia Scheimbauer, Chris Schommer-Pries, and Peter Teichner for helpful comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Rune Haugseng.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Haugseng, R. Iterated spans and classical topological field theories. Math. Z. 289, 1427–1488 (2018). https://doi.org/10.1007/s00209-017-2005-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-017-2005-x

Navigation