Skip to main content
Log in

An approximation principle for congruence subgroups II: application to the limit multiplicity problem

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  1. Abert, M., Bergeron, N., Gelander, T., Nikolov, N., Raimbault, J., Samet, I.: On the growth of \({L}^2\)-invariants for sequences of lattices in Lie groups. Ann. Math. 185(3), 711–790 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  2. Arthur, G.J.: A trace formula for reductive groups. I. Terms associated to classes in \(G({ Q})\). Duke Math. J. 45(4), 911–952 (1978)

    Article  MathSciNet  Google Scholar 

  3. Arthur, J.: A trace formula for reductive groups. II. Applications of a truncation operator. Compos. Math. 40(1), 87–121 (1980)

    MathSciNet  MATH  Google Scholar 

  4. Arthur, J.: The trace formula in invariant form. Ann. Math. 2(1141), 1–74 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  5. Arthur, J.: On a family of distributions obtained from Eisenstein series. I. Application of the Paley-Wiener theorem. Am. J. Math. 104(6), 1243–1288 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  6. Arthur, J.: On a family of distributions obtained from Eisenstein series. II. Explicit formulas. Am. J. Math. 104(6), 1289–1336 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  7. Arthur, J.: A measure on the unipotent variety. Can. J. Math. 37(6), 1237–1274 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  8. Arthur, J.: On a family of distributions obtained from orbits. Can. J. Math. 38(1), 179–214 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  9. Arthur, J.: An introduction to the trace formula, Harmonic analysis, the trace formula, and Shimura varieties, Clay Math. Proc., vol. 4, Am. Math. Soc., Providence, RI, pp. 1–263 (2005)

  10. Borel, A., Prasad, G.: Finiteness theorems for discrete subgroups of bounded covolume in semi-simple groups. Inst. Hautes Études Sci. Publ. Math. 69, 119–171 (1989)

  11. Borel, A., Prasad, G.: Addendum to: “Finiteness theorems for discrete subgroups of bounded covolume in semi-simple groups” [Inst. Hautes Études Sci. Publ. Math. No. 69 (1989), 119–171; MR1019963 (91c:22021)], Inst. Hautes Études Sci. Publ. Math. 71, 173–177 (1990)

  12. Clozel, L., Delorme, P.: Le théorème de Paley-Wiener invariant pour les groupes de Lie réductifs. II. Ann. Sci. École Norm. Sup. (4) 23(2), 193–228 (1990)

    Article  MATH  Google Scholar 

  13. Chevalley, C.: Deux théorèmes d’arithmétique. J. Math. Soc. Jpn. 3, 36–44 (1951)

    Article  MATH  Google Scholar 

  14. Delorme, P.: Formules limites et formules asymptotiques pour les multiplicités dans \(L^2(G/\Gamma )\). Duke Math. J. 53(3), 691–731 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  15. de George, D.L., Wallach, N.R.: Limit formulas for multiplicities in \(L^{2}(\Gamma \backslash G)\). Ann. Math. (2) 107(1), 133–150 (1978)

    MathSciNet  Google Scholar 

  16. De George, D.L., Wallach, N.R.: Limit formulas for multiplicities in \(L^{2}(\Gamma \backslash G)\). II. The tempered spectrum. Ann. Math. (2) 109(3), 477–495 (1979)

    Article  MathSciNet  Google Scholar 

  17. Finis, T., Lapid, E.: An approximation principle for congruence subgroups. J. Eur. Math. Soc. (JEMS) to appear. arXiv:1308.3604

  18. Finis, T., Lapid, E.: On the analytic properties of intertwining operators, I: global normalizing factors. Bull. Iran Math. Soc. 43(4), 235–277 (2017)

    MathSciNet  Google Scholar 

  19. Finis, T., Lapid, E.: On the spectral side of Arthur’s trace formula–combinatorial setup. Ann. Math. (2) 174(1), 197–223 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  20. Finis, T., Lapid, E.: On the analytic properties of intertwining operators, II: local degree bounds and limit multiplicities (2017). arXiv:1705.08191

  21. Finis, T., Lapid, E., Müller, W.: On the spectral side of Arthur’s trace formula–absolute convergence. Ann. Math. (2) 174(1), 173–195 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  22. Finis, T., Lapid, E., Müller, W.: Limit multiplicities for principal congruence subgroups of GL \((n)\) and SL \((n)\). J. Inst. Math. Jussieu 14(3), 589–638 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  23. Matz, J.: Bounds for global coefficients in the fine geometric expansion of Arthur’s trace formula for \({\rm GL}(n)\). Israel J. Math. 205(1), 337–396 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  24. Matz, Jasmin .: Limit multiplicities for \({PSL}(2,{O}_{F})\) in \({PSL}(2,{R}^{r_1}\oplus {C}^{r_2})\) (2017). arXiv:1702.06170

  25. Matz, J.: Weyl’s law for Hecke operators on \({\rm GL}(n)\) over imaginary quadratic number fields. Am. J. Math. 139(1), 57–145 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  26. Platonov, V., Rapinchuk, A.: Algebraic groups and number theory. Pure and Applied Mathematics, vol. 139, Academic Press Inc., Boston, MA, 1994. Translated from the 1991 Russian original by Rachel Rowen

  27. Prasad, G.: Volumes of \(S\)-arithmetic quotients of semi-simple groups. Inst. Hautes Études Sci. Publ. Math. 69, 91–117 (1989). With an appendix by Moshe Jarden and the author

    Article  MathSciNet  MATH  Google Scholar 

  28. Raghunathan, M.S.: On the congruence subgroup problem. Inst. Hautes Études Sci. Publ. Math. 46, 107–161 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  29. Raghunathan, M.S.: On the congruence subgroup problem. II. Invent. Math. 85(1), 73–117 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  30. Sauvageot, F.: Principe de densité pour les groupes réductifs. Compos. Math. 108(2), 151–184 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  31. Wallach, N.R.: The spectrum of compact quotients of semisimple Lie groups. Proceedings of the International Congress of Mathematicians (Helsinki, 1978) (Helsinki), Acad. Sci. Fennica, pp. 715–719 (1980)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Erez Lapid.

Additional information

T.F. partially supported by DFG Heisenberg Grant # FI 1795/1-1.

E.L. partially supported by Grant #711733 from the Minerva Foundation.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Finis, T., Lapid, E. An approximation principle for congruence subgroups II: application to the limit multiplicity problem. Math. Z. 289, 1357–1380 (2018). https://doi.org/10.1007/s00209-017-2002-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-017-2002-0

Navigation