Skip to main content
Log in

Orbit equivalence of Cantor minimal systems and their continuous spectra

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

To any continuous eigenvalue of a Cantor minimal system \((X,\,T)\), we associate an element of the dimension group \(K^0(X,\,T)\) associated to \((X,\,T)\). We introduce and study the concept of irrational miscibility of a dimension group. The main property of these dimension groups is the absence of irrational values in the additive group of continuous spectrum of their realizations by Cantor minimal systems. The strong orbit equivalence (respectively orbit equivalence) class of a Cantor minimal system associated to an irrationally miscible dimension group \((G,\,u)\) (resp. with trivial infinitesimal subgroup) with trivial rational subgroup, have no non-trivial continuous eigenvalues.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Boyle, M.: Topological Orbit Equivalence and Factor Maps in Symbolic Dynamics, Ph.D. Thesis, University of Washington, Seattle (1983)

  2. Brauer, A.: On a problem of partitions. Am. J. Math. 64, 299–312 (1942)

    Article  MATH  Google Scholar 

  3. Bressaud, X., Durand, F., Maass, A.: Eigenvalues of finite rank Bratteli–Vershik dynamical systems. Ergod. Theory. Dyn. Syst. 30, 639–664 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Cortez, M. I., Durand, F., Petite, S.: Eigenvalues and strong orbit equivalence. Ergod. Theory. Dyn. Syst. https://doi.org/10.1017/etds.2015.26

  5. Durand, F., Host, B., Skau, C.: Substitutional dynamical systems, Bratteli diagrams and dimension groups. Ergod. Theory. Dyn. Syst. 19, 953–993 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. Durand, F., Frank, A., Maass, A.: Eigenvalues of Minimal Cantor Systems. arXiv:1504.00067 8 (July 2017)

  7. Dye, H.: On groups of measure preserving transformations I. Am, J. Math. 81, 119–159 (1959)

    Article  MathSciNet  MATH  Google Scholar 

  8. Effros, E.G., Handelman, D., Shen, C.L.: Dimension groups and their affine representstions. Am. J. Math. 102, 385–407 (1980)

    Article  MATH  Google Scholar 

  9. Furstenberg, H.: Recurrence in Ergodic Theory and Combinatorial Number Theory. Princeton University Press, Princeton (1981)

    Book  MATH  Google Scholar 

  10. Giordano, T., Matui, H., Putnam, I., Skau, C.: Orbit equivalence for Cantor minimal \({\mathbb{Z}}^d\)-systems. Invent. Math. 179, 119–158 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Giordano, T., Matui, H., Putnam, I., Skau, C.: The absorption theorem for affine equivalence relations. Ergod. Theory Dyn. Syst. 28, 1509–1531 (2008)

    Article  MATH  Google Scholar 

  12. Giordano, T., Putnuam, I., Skau, C.: Topological orbit equivalence and C*-crossed product. J. Reine Angew. Math. 469, 51–111 (1995)

    MathSciNet  Google Scholar 

  13. Gjerde, R., Johansen, O.: Bratteli–Vershik models for cantor minimal systems: applications to Toeplitz flows. Ergod. Theory Dyn. Syst. 20, 1687–1710 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  14. Glasner, E.: Ergodic theory via joinings. In: Mathematical Surveys and Monographs, vol. 101. American Mathematical Society, Providence, RI (2003)

  15. Glasner, E., Wiess, B.: Weak orbit equivalence of Cantor minimal systems. Intern. J. Math 6, 569–579 (1995)

    Article  MathSciNet  Google Scholar 

  16. Gottschalk, W., Hedlund, G.: Topological Dynamics. American Mathematical Society Colloquium Publications, vol. 36. American Mathematical Society, Providence, RI (1955)

  17. Handelman, D.: Equal Column Sum and Equal Row Sum Dimension Group Realization. arXiv:1301.2799v1 [math. FA] 13 (January 2013)

  18. Handelman, D.: Free rank \(n+1\) dense subgroup of \({\mathbb{R}}^n\) and their endomorphisms. J. Funct. Anal. 46, 1–27 (1982)

    Article  MathSciNet  MATH  Google Scholar 

  19. Herman, R.H., Putnuam, I.F., Skau, C.F.: Ordered Bratteli Diagrams, dimension groups and topological dynamics. Int. J. Math. 3, 827–864 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  20. Hoynes, S.M.: Toeplitz flows and their ordered K-theory. Ergod. Theory. Dyn. Syst 36(6), 1892–1921 (2016). https://doi.org/10.1017/etds.2014.144

  21. Ormes, N.: Real coboundaries for Minimal cantor systems. Pacif. J. Math. 195(2), 453–476 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  22. Ormes, N.: Strong orbit realization for minimal homeomorphisms. J. Anal. Math. 71, 103–133 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  23. Quas, A.: Rigidity of continuous coboundaries. Bull. Lond. Math. Soc. 29, 595–600 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  24. Skau, C.: Ordered \(K\)-theory and minimal symbolic dynamical systems. Colloq. Math. 84(85), 203–227 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  25. Subrohamanian, T.K.: Moothathu, syndetically proximal pairs. J. Math. Anal. Appl. 379, 656–663 (2011)

    Article  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to M. Hosseini.

Additional information

The three authors were partially supported by NSERC operating grants.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Giordano, T., Handelman, D. & Hosseini, M. Orbit equivalence of Cantor minimal systems and their continuous spectra. Math. Z. 289, 1199–1218 (2018). https://doi.org/10.1007/s00209-017-1994-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-017-1994-9

Mathematics Subject Classification

Navigation