Hausdorff dimension of the graphs of the classical Weierstrass functions


We show that the graph of the classical Weierstrass function \(\sum _{n=0}^\infty \lambda ^n \cos (2\pi b^n x)\) has Hausdorff dimension \(2+\log \lambda /\log b\), for every integer \(b\ge 2\) and every \(\lambda \in (1/b,1)\). Replacing \(\cos (2\pi x)\) by a general non-constant \(C^2\) periodic function, we obtain the same result under a further assumption that \(\lambda b\) is close to 1.

This is a preview of subscription content, access via your institution.


  1. 1.

    Bamón, R., Kiwi, J., Rivera-Letelier, J., Urzúa, R.: On the topology of solenoidal attaractors of the cylinder. Ann. I. Poincaré AN 23, 209–236 (2006)

    Article  MATH  Google Scholar 

  2. 2.

    Barański, K., Bárány, B., Romanowska, J.: On the dimension of the graph of the classical Weierstrass function. Adv. Math. 265, 32–59 (2014)

    MathSciNet  Article  MATH  Google Scholar 

  3. 3.

    Besicovitch, A.S., Ursell, H.D.: Sets of fractional dimensions (V): on dimensional numbers of some continuous curves. J. Lond. Math. Soc. 1(1), 18–25 (1937)

    Article  MATH  Google Scholar 

  4. 4.

    Erdös, P.: On the smooth properties of a family of Bernoulli convolutions. Am. J. Math. 62, 180–186 (1940)

    Article  MATH  Google Scholar 

  5. 5.

    Falconer, K.: The geometry of fractal sets. Cambridge University Press, Cambridge (1985)

    Book  MATH  Google Scholar 

  6. 6.

    Hardy, G.H.: Weierstrass’s non-differentiable function. Trans. Am. Math. Soc. 17, 301–325 (1916)

    MathSciNet  MATH  Google Scholar 

  7. 7.

    Hu, T.Y., Lau, K.-S.: Fractal dimensions and singularities of the Weierstrass type functions. Trans. Am. Math. Soc. 335, 649–655 (1993)

    MathSciNet  Article  MATH  Google Scholar 

  8. 8.

    Kaplan, J.L., Mallet-Paret, J., Yorke, J.A.: The Lyapunov dimension of a nowhere differentiable attracting torus. Ergod. Theory Dyn. Syst. 4, 261–281 (1984)

    MathSciNet  Article  MATH  Google Scholar 

  9. 9.

    Keller, G.: An elementary proof for the dimension of the graph of the classical Weierstrass function. Ann. Inst. Henri Poincaré Probab. Stat. 53, 169–181 (2017)

  10. 10.

    Ledrappier, F.: On the dimension of some graphs. Contemp. Math. 135, 285–293 (1992)

    MathSciNet  Article  MATH  Google Scholar 

  11. 11.

    Ledrappier, F., Young, L.S.: The metric entropy of diffeomorphisms. II. Relations between entropy, exponents and dimension. Ann. Math. 122(3), 540–574 (1985)

    MathSciNet  Article  MATH  Google Scholar 

  12. 12.

    Mandelbrot, B.: Fractals: form, chance, and dimension. W.H. Freeman and Co., San Francisco (1977)

    MATH  Google Scholar 

  13. 13.

    Peres, Y., Solomyak, B.: Absolute continuity of Bernoulli convolutions, a simple proof. Math. Res. Lett. 3, 231–239 (1996)

    MathSciNet  Article  MATH  Google Scholar 

  14. 14.

    Rezakhanlou, F.: The packing measure of the graphs and level sets of certain continuous functions. Math. Proc. Camb. Philos. Soc. 104, 347–360 (1988)

    MathSciNet  Article  MATH  Google Scholar 

  15. 15.

    Solomyak, B.: On the random series \(\sum \pm \lambda ^n\) (an Erdös problem). Ann. Math. 142, 611–625 (1995)

    MathSciNet  Article  MATH  Google Scholar 

  16. 16.

    Tsujii, M.: Fat Solenoidal attractors. Nonlinearity 14(5), 1011–1027 (2001)

    MathSciNet  Article  MATH  Google Scholar 

Download references


I would like to thank D. Feng, W. Huang and J. Wu for drawing my attention to the recent work [2]. I would also like to thank H. Ruan and Y. Wang for reading carefully a first version of the manuscript and pointing out a number of errors.

Author information



Corresponding author

Correspondence to Weixiao Shen.

Appendix: A proof of Ledrappier’s theorem

Appendix: A proof of Ledrappier’s theorem

This appendix is devoted to a proof of Ledrappier’s theorem under a further assumption that \(\phi '\) is continuous (for simplicity). The proof is motivated by the original proof given in [10] and also the recent paper [9].

Let \(b\ge 2\) be an integer and \(\lambda \in (1/b,1)\) and let \(f(x)=\sum _{n=0}^\infty \lambda ^n \phi (b^n x)\). We use z to denote a point in \(\mathbb {R}^2\) and B(zr) denote the open ball in \(\mathbb {R}^2\) centered at z and of radius r. We assume that \(\dim (m_x)=1\) holds for Lebesgue a.e. \(x\in [0,1)\), which means for Lebesgue a.e. \(x\in [0,1)\) and \(\mathbb {P}\)-a.e. \(\mathbf u \in \mathcal {A}^{\mathbb {Z}^+}\),

$$\begin{aligned} \lim _{r\rightarrow 0} \frac{\log {\mathbb {P}}\left( \{\mathbf{v }: |S(x,\mathbf{u })-S(x,\mathbf{v })|\le r\}\right) }{\log r}=1. \end{aligned}$$

Let \(\mu \) be the pushforward of the Lebesgue measure on [0, 1) under the map \(x\mapsto (x, f(x))\). Let

$$\begin{aligned} \underline{d}(\mu , z)=\liminf _{r\rightarrow 0}\frac{\log \mu (B(z,r))}{\log r} \end{aligned}$$


$$\begin{aligned} \underline{D}=\text {essinf}\,\, \underline{d} (\mu , z). \end{aligned}$$

We shall prove that

$$\begin{aligned} \underline{D}\ge D=2+\frac{\log \lambda }{\log b}. \end{aligned}$$

This is enough to conclude that the Hausdorff dimension of the graph of f is D. Indeed, by the mass distribution principle, it implies that the Hausdorff dimension is at least D. On the other hand, it is easy to check that f is a \(C^{2-D}\) function which implies that the Hausdorff dimension is at most D (see for example Theorem 8.1 of [5]).


Define \(\Phi : [0,1)\times \mathbb {R}\rightarrow [0,1)\times \mathbb {R}\) as

$$\begin{aligned} \Phi (x,y)=(bx \mod 1, (y-\phi (x))/\lambda ). \end{aligned}$$

Define \(G: [0,1)\times \mathbb {R}\times \mathcal {A}^{\mathbb {Z}^+}\rightarrow [0,1)\times \mathcal {A}^{\mathbb {Z}^+}\) as

$$\begin{aligned} G(x,y, \mathbf u )=(\Phi (x,y), u_0\mathbf u ), \text { if } bx\in [u_0, u_0+1). \end{aligned}$$

The graph of f is an invariant repeller of the expanding map \(\Phi \). We shall use neighborhoods bounded by unstable manifolds. For each \(z_0=(x_0,y_0)\in \mathbb {R}^2\) and \(\mathbf u \in \mathcal {A}^{\mathbb {Z}^+}\), let \(\ell _{z_0,\mathbf u }(x)\) denote the unique solution of the initial value problem:

$$\begin{aligned} y'=-\gamma S(x,\mathbf u ), y(x_0)=y_0. \end{aligned}$$

These curves are strong unstable manifolds of \(\Phi \) and they satisfy the following property: for \(z=(x,y),z_0=(x_0,y_0)\in [u_0/b, (u_0+1)/b)\times \mathbb {R}\), \(u_0\in \mathcal {A}\),

$$\begin{aligned} \Phi (x, \ell _{z_0, \mathbf u }(x))=(bx-u_0, \ell _{\Phi (z_0), u_0\mathbf u }(bx-u_0)). \end{aligned}$$

For \(z_0=(x_0,y_0)\in [0,1)\times \mathbb {R}\), \(\mathbf u \in \mathcal {A}^{\mathbb {Z}^+}\) and \(\delta _1,\delta _2>0\), let

$$\begin{aligned} Q(z_0, \mathbf u ,\delta _1,\delta _2)=\{(x,y): x\in [0,1), |x-x_0|\le \delta _1, |y-\ell _{z_0,\mathbf u }(x)|\le \delta _2\}. \end{aligned}$$

The following observation was taken from [9].

Lemma 5.17

(Telescope) Let \(\{(z_i,\mathbf u _i)\}_{i=0}^n\) be a G-orbit and let \(x_i\) denote the first coordinate of \(z_i\). For any \(\delta _1,\delta _2>0\), if \(\delta _1\le x_n<1-\delta _1\), then

$$\begin{aligned} \mu (Q(z_0,\mathbf u , \delta _1 b^{-n}, \delta _2 \lambda ^n))=b^{-n} \mu (Q(z_n,\mathbf u _n, \delta _1,\delta _2)). \end{aligned}$$


Let \(J_i=[x_i-\delta _1 b^{i-n}, x_i+\delta _1 b^{i-n}]\), \(Q_i=Q(z_i,\mathbf u _i, \delta _1 b^{i-n},\delta _2 \lambda ^{n-i})\) and let \(E_i=\{x\in J_i: (x, f(x))\in Q_i\}\). Then \(\mu (Q_i)=|E_i|\). Under the assumption \(\delta _1\le x_n<1-\delta _1\), \(Q_0\) is mapped onto \(Q_n\) diffeomorphically by \(\Phi ^n\). Thus \(J_0\) is mapped onto \(J_n\) and \(E_0\) is mapped onto \(E_n\) diffeomorphically by the linear map \(x\mapsto b^n x\). Thus \(|E_0|=b^{-n}|E_n|\).

\(\square \)

A version of Marstrand’s estimate

Fix a constant \(t\in (1/(1+\alpha ),1)\).

Proposition 5.18

For \(\mu \times \mathbb {P}\)-a.e. \((z_0,\mathbf u )\),

$$\begin{aligned} \liminf _{r\rightarrow 0}\frac{\log \mu (Q(z_0,\mathbf u , r^t, r))}{\log r} \ge 1+t(\underline{D}-1). \end{aligned}$$


It suffices to prove that for each \(\xi >0\) and \(\eta >0\), there is a subset \(\Sigma \) of \([0,1)\times \mathbb {R}\times \mathcal {A}^{\mathbb {Z}^+}\) with \((\mu \times \mathbb {P})(\Sigma )>1-\eta \) such that

$$\begin{aligned} \liminf _{r\rightarrow 0} \frac{\log \mu (Q(z_0,\mathbf u , r^t, r))}{\log r} \ge 1+t(\underline{D}-1)-3\xi \end{aligned}$$

holds for all \((z_0,\mathbf u )\in \Sigma \). By Egoroff’s theorem, we can choose \(\Sigma \) with \((\mu \times \mathbb {P})(\Sigma )>1-\eta \) for which there is \(r_0>0\) such that for each \((z_0,\mathbf u )\in \Sigma \),

  1. (S1)

    \(\mathbb {P}\left( \left\{ \mathbf v : |S(x_0,\mathbf u )-S(x_0,\mathbf v )|\le r\right\} \right) \le r^{1-\xi }\) for each \(0< r\le r_0\), where \(x_0\) is the first coordinate of \(z_0\);

  2. (S2)

    \(\mu (B(z_0, r))\le r^{\underline{D}-\xi }\) for each \(0<r\le r_0\).

In the following we shall prove that for \(r>0\) small enough,

$$\begin{aligned} \int _\mathbf{u : (z_0,\mathbf u )\in \Sigma } \mu (Q(z_0, \mathbf u , r^t, r))d\mathbb {P}\le r^{1+t(\underline{D}-1)-2\xi }, \end{aligned}$$

holds for every \(z_0\in [0,1)\times \mathbb {R}\). This is enough to conclude the proof. Indeed, let \(\tau \in (0,1)\) be an arbitrary constant. Then by (6.3), there is N such that for \(n>N\),

$$\begin{aligned} \mathbb {P}\left( \left\{ \mathbf u : (z_0,\mathbf u )\in \Sigma , \mu (Q(z_0,\mathbf u ,\tau ^{nt}, \tau ^n))> (\tau ^n)^{1+t(\underline{D}-1)-3\xi }\right\} \right) \le \tau ^{n\xi } \end{aligned}$$

holds for every \(z_0\in [0,1)\times \mathbb {R}\). By Fubini’s theorem, this implies that

$$\begin{aligned} \mu \times \mathbb {P}\left( \left\{ (z_0,\mathbf u )\in \Sigma : \mu (Q(z_0,\mathbf u ,\tau ^{nt}, \tau ^n))> (\tau ^n)^{1+t(\underline{D}-1)-3\xi }\right\} \right) \le \tau ^{n\xi }. \end{aligned}$$

By Borel–Cantelli, it follows that for almost every \((z_0,\mathbf u ) \in \Sigma \), \(\mu (Q(z_0,\mathbf u ,\tau ^{nt},\tau ^n))\le (\tau ^n)^{1+t(\underline{D}-1)-3\xi }\) holds for all n large enough. The inequality (6.2) follows.

Let us now prove (6.3). We first prove

Claim Provided that \(r>0\) is small enough, for every \(z_0, z\in [0,1)\times \mathbb {R}\), we have

$$\begin{aligned} \mathbb {P}(\left\{ \mathbf u : (z_0,\mathbf u )\in \Sigma , z\in Q(z_0,\mathbf u , r^t, r)\right\} )\le C_1 \left( \frac{r}{|z-z_0|}\right) ^{1-2\xi }, \end{aligned}$$

where \(C_1>0\) is a constant.

To prove this claim, let \(z=(x,y)\), \(z_0=(x_0,y_0)\) and \(h(x)=\ell _{z_0,\mathbf u }(x)\). Then h(x) is \(C^{1+\alpha }\) with uniformly bounded norm. So

$$\begin{aligned} |y-y_0+\gamma S(x_0,\mathbf u ) (x-x_0)|\le & {} |y-h(x)|+|h(x)-h(x_0)-h'(x_0)(x-x_0)|\\\le & {} r+|\int _{x_0}^x (h'(s)-h'(x_0))ds |\le r+ C r^{t(1+\alpha )}< 2r, \end{aligned}$$

provided that r is small enough. Thus

$$\begin{aligned} \{S(x_0,\mathbf u ):(z_0,\mathbf u )\in \Sigma , z\in Q(z_0, \mathbf u , r^t, r)\} \end{aligned}$$

is contained in an interval of length \(2r/(\gamma |x-x_0|)\). Since

$$\begin{aligned} |z-z_0|\le |x-x_0|+|y-y_0|\le (1+\gamma |S(x_0,\mathbf u )|)|x-x_0|+2r, \end{aligned}$$

and \(|S(x,\mathbf u )|\) is uniformly bounded, the inequality (6.4) follows from the property (S1). Note that if \(2r/(\gamma |x-x_0|)>r_0\), then \(r/|z-z_0|\) is bounded away from zero, so (6.4) holds for sufficiently large \(C_1\), since the left hand side of this inequality does not exceed one.

We continue the proof of (6.3). Note that there is a constant \(C_2>0\) such that for every \(r>0\) and any \(z_0\in [0,1)\times \mathbb {R}\),

$$\begin{aligned} \bigcup _\mathbf{u \in \mathcal {A}^{\mathbb {Z}^+}} Q(z_0, \mathbf u , r^t, r)\subset B(z_0, C_2r^t). \end{aligned}$$

Of course we may assume there is \(\mathbf u \) such that \((z_0,\mathbf u )\in \Sigma \). Thus for \(R>0\) small enough, we may apply (S2) and obtain

$$\begin{aligned} \int _{B(z_0,R)} \frac{d\mu (z)}{|z-z_0|^{1-2\xi }}&=\sum _{n=0}^\infty \int _{e^{-n-1}R\le |z-z_0|< e^{-n} R} \frac{d\mu (z)}{|z-z_0|^{1-2\xi }}\\&\le \sum _{n=0}^\infty \frac{\mu (B(z_0, e^{-n}R))}{(e^{-n-1}R)^{1-2\xi }}\le \sum _{n=0}^\infty \frac{(e^{-n}R)^{\underline{D}-\xi }}{(e^{-n-1}R)^{1-2\xi }}\\&=C(\xi ) R^{\underline{D}-1+\xi }, \end{aligned}$$

where \(C(\xi )\) is a constant depending on \(\xi \) and \(\underline{D}\). By Fubini’s theorem,

$$\begin{aligned}&\int _\mathbf{u : (z_0,\mathbf u )\in \Sigma } \mu (Q(z_0, \mathbf u , r^t, r) d\mathbb {P}(\mathbf u )\\&\quad = \int _\mathbf{u : (z_0,\mathbf u )\in \Sigma }\int _{\mathbb {R}^2} 1_{Q(z_0, \mathbf u , r^t, r)}(z) d\mu (z) d\mathbb {P}(\mathbf u )\\&\quad = \int _{B(z_0, C_2r^t)} \mathbb {P}\left( \left\{ \mathbf u : (z_0,\mathbf u )\in \Sigma , z\in Q(z_0,\mathbf u , r^t, r)\right\} \right) d\mu (z)\\&\quad \le C_1 r^{1-2\xi } \int _{B(z_0, C_2 r^t)} \frac{d\mu (z)}{|z-z_0|^{1-2\xi }} \\&\quad \le C' r^{1+t(\underline{D}-1)-(2-t)\xi }< r^{1+t(\underline{D}-1)-2\xi }, \end{aligned}$$

provided that r is small enough. \(\square \)

We are ready to complete the proof of Ledrappier’s theorem. For any \(\xi >0\), \(\eta >0\), by Proposition 5.18 and Egroff’s theorem, we can pick up a subset \(\Sigma \) of \(\mathbb {R}^2\times \mathcal {A}^{\mathbb {Z}^+}\) and a constant \(r_*>0\) such that \((\mu \times \mathbb {P})(\Sigma )>1-3\eta \) and such that for each \((z,\mathbf u )\in \Sigma \),

$$\begin{aligned} \mu (Q(z,\mathbf u , r^t, r))\le r^{1+t(\underline{D}-1)-\xi } \text { for each } 0<r<r_*. \end{aligned}$$

We may further assume that \(\Sigma \subset [\eta , 1-\eta ]\times \mathbb {R}\times \mathcal {A}^{\mathbb {Z}^+}\).

Note that \(\mu \times \mathbb {P}\) is an ergodic invariant measure for the map G. By Birkhorff’s Ergodic Theorem, for almost every \((z_0,\mathbf u _0)\), there is an increasing sequence \(\{n_k\}_{k=1}^\infty \) of positive integers such that \(G^{n_k}(z_0,\mathbf u _0)\in \Sigma \) and

$$\begin{aligned} \liminf _{k\rightarrow \infty } n_k/n_{k+1} > 1-3\eta . \end{aligned}$$

For each \(n=1,2,\ldots \), put \(\delta _n=\gamma ^{nt/(1-t)}b^{-n}\), \(r_n=\gamma ^{n/(1-t)}\), so that

$$\begin{aligned} r_n=\delta _n \lambda ^{-n},\quad \text { and }\quad r_n^t=\delta _n b^n. \end{aligned}$$

Let us prove that for k sufficiently large,

$$\begin{aligned} \frac{\log \mu (Q(z_0,\mathbf u _0, \delta _{n_k}, \delta _{n_k}))}{\log \delta _{n_k}}\ge \underline{D}+(D-\underline{D})A_1-A_2\xi , \end{aligned}$$

where \(A_1, A_2\) are positive constants depending only on \(\lambda \) and b.

Indeed, by Lemma 5.17, for k large enough,

$$\begin{aligned} \mu (Q(z_0,\mathbf u _0, \delta _{n_k}, \delta _{n_k}))=\frac{\mu (Q(G^{n_k}(z_0,\mathbf u _0),r_{n_k}^t, r_{n_k}))}{b^{n_k}} \le \frac{r_{n_k}^{1+t(\underline{D}-1)-\xi }}{b^{n_k}}. \end{aligned}$$

Using definition of \(r_n\) and \(\delta _n\), this gives us

$$\begin{aligned} \mu (Q(z_0,\mathbf u _0,\delta _{n_k},\delta _{n_k}))\le \delta _{n_k}^{\underline{D}}\times (b^{-n_k})^{D-\underline{D}} r_{n_k}^{-\xi }, \end{aligned}$$

Thus (5.6) holds with \(A_1=\log b/(\log b+t\log \gamma ^{-1}/(1-t))\) and \(A_2=\log \gamma /(t\log \gamma +(1-t)\log b^{-1})\).

By (5.5), for each n large enough, there is k such that \((1-3\eta )n_k<n_{k-1}<n\le n_k\). It follows that

$$\begin{aligned} \liminf _{n\rightarrow \infty }\frac{\log \mu (Q(z_0,\mathbf u _0,\delta _n, \delta _n))}{\log \delta _n}\ge (1-3\eta ) (\underline{D}+(D-\underline{D})A_1-A_2\xi ). \end{aligned}$$

Since \(\ell _{x_0,\mathbf u _0}\) is a smooth curve, there exists \(\kappa \in (0,1)\) such that \(Q(z_0,\mathbf u _0,\delta _k,\delta _k)\) contains \(B(z_0, \kappa \delta _k)\) for each k. Therefore,

$$\begin{aligned} \underline{d}(\mu , z_0)=\liminf _{n\rightarrow \infty }\frac{\log \mu (Q(z_0,\mathbf u _0,\delta _n, \delta _n))}{\log \delta _n}\ge (1-3\eta ) (\underline{D}+(D-\underline{D})A_1-A_2\xi ). \end{aligned}$$

Since this estimate holds for \(\mu \)-a.e. \(z_0\), we obtain

$$\begin{aligned} \underline{D}\ge (1-3\eta )\left( \underline{D}+ A_1(D-\underline{D})-A_2\xi \right) . \end{aligned}$$

As \(\xi , \eta \) can be chosen arbitrarily small, we conclude

$$\begin{aligned} \underline{D}\ge \underline{D}+ A_1(D-\underline{D}), \end{aligned}$$

which means \(\underline{D}\ge D\), as desired.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Shen, W. Hausdorff dimension of the graphs of the classical Weierstrass functions. Math. Z. 289, 223–266 (2018).

Download citation

Mathematics Subject Classification

  • Primary 37C40
  • Secondary 37D20
  • 28A80
  • 37C45