Skip to main content
Log in

Higher order approximation of analytic sets by topologically equivalent algebraic sets

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

It is known that every germ of an analytic set is homeomorphic to the germ of an algebraic set. In this paper we show that the homeomorphism can be chosen in such a way that the analytic and algebraic germs are tangent with any prescribed order of tangency. Moreover, the space of arcs contained in the algebraic germ approximates the space of arcs contained in the analytic one, in the sense that they are identical up to a prescribed truncation order.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. A pseudopolynomial is a polynomial in \(x_i\) with coefficients that are analytic in the other variables. The pseudopolynomials \(F_i\) that we consider are moreover distinguished polynomials in x, i.e. are of the form \(\displaystyle x_i^p+\sum _{j=1}^pa_j(x^{i-1})x_i^{p-j}\) with \(a_j(0)=0\) for all j. They may depend analytically on t that is considered as a parameter.

References

  1. Akbulut, S., King, H.: On approximating submanifolds by algebraic sets and a solution to the Nash conjecture. Invent. Math. 107, 87–98 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  2. Artin, M.: Algebraic approximation of structures over complete local rings. Publ. IHES 36, 23–58 (1969)

    Article  MathSciNet  MATH  Google Scholar 

  3. Artin, M., Mazur, B.: On periodic points. In: Annals of Mathematics, Second series, vol. 81, no. 1, pp. 82–99 (1965)

  4. Bilski, M., Parusiński, A., Rond, G.: Local topological algebraicity of analytic function germs. J. Algebraic Geom. 26, 177–197 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  5. Bilski, M.: Approximation of analytic sets by Nash tangents of higher order. Math. Z. 256(4), 705–716 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Bilski, M.: Higher order approximation of complex analytic sets by algebraic sets. Bull. Sci. Math. 139(2), 198–213 (2015)

    Article  MathSciNet  Google Scholar 

  7. Bochnak, J.: Algebraicity versus analyticity, Rocky Mountain. J. Math. 14(4), 863–880 (1984)

    MathSciNet  MATH  Google Scholar 

  8. Bochnak, J., Kucharz, W.: Local algebraicity of analytic sets. J. Reine Angew. Math. 352, 1–14 (1984)

    MathSciNet  MATH  Google Scholar 

  9. Bochnak, J., Coste, M., Roy, M.-F.: Real algebraic geometry, Ergebnisse der Mathematik und ihrer Grenzgebiete (3). Springer-Verlag, Berlin (1998)

    Google Scholar 

  10. Braun, R.W., Meise, R., Taylor, B.A.: Higher order tangents to analytic varieties along curves. Can. J. Math. 55, 64–90 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  11. Ferrarotti, M., Fortuna, E., Wilson, L.: Local algebraic approximation of semianalytic sets. Proc. Am. Math. Soc. 143, 13–23 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Ferrarotti, M., Fortuna, E., Wilson, L.: Algebraic approximation preserving dimension. In: Annals of Mathematics Pura Applcations, Fourth series, vol. 196, no. 2, pp. 519–531 (2017)

  13. Greenberg, M.J.: Rational points in Henselian discrete valuation rings. Publ. Math. IHES 31, 59–64 (1966)

    Article  MathSciNet  MATH  Google Scholar 

  14. Kucharz, W.: Power series and smooth functions equivalent to a polynomial. Proc. Am. Math. Soc. 98(3), 527–533 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kurdyka, K.: Ensembles semi-algébriques symétriques par arcs. Math. Ann. 282, 445–462 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  16. Lempert, L.: Algebraic approximations in analytic geometry. Invent. Math. 121, 335–354 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  17. Mostowski, T.: Topological equivalence between analytic and algebraic sets. Bull. Pol. Acad. Sci. Math. 32(7–8), 393–400 (1984)

    MathSciNet  MATH  Google Scholar 

  18. Parusiński, A., Paunescu, L.: Arcwise analytic stratification, Whitney fibering conjecture and Zariski equisingularity. Adv. Math. 309, 254–305 (2017)

    Article  MathSciNet  MATH  Google Scholar 

  19. Płoski, A.: Note on a theorem of M. Artin. Bull. Acad. Polon. Sci. Sér. Sci. Math. Astronom. Phys 22, 1107–1109 (1974)

    MathSciNet  MATH  Google Scholar 

  20. Popescu, D.: General Néron desingularization. Nagoya Math. J. 100, 97–126 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  21. Quarez, R.: The Artin conjecture for \({\mathbb{Q}}\)-algebras. Rev. Mat. Univ. Complut. Madr 10(2), 229–263 (1997)

    MathSciNet  MATH  Google Scholar 

  22. Samuel, P.: Algébricité de certains points singuliers algébroïdes. J. Math. Pures Appl. 35, 1–6 (1956)

    MathSciNet  MATH  Google Scholar 

  23. Schappacher, N.: L’inégalité de Łojasiewicz ultramétrique. CR Acad. Sci. Paris Sér. I Math. 296(10), 439–442 (1983)

    MathSciNet  MATH  Google Scholar 

  24. Spivakovsky, M.: A new proof of D. Popescu’s theorem on smoothing of ring homomorphisms. J. Am. Math. Soc. 12(2), 381–444 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  25. Swan, R.: Néron-Popescu desingularization, Algebra and geometry (Taipei, 1995), pp. 135-192, Lect. Algebra Geom., 2, Internat. Press, Cambridge, (1998)

  26. Tougeron, J.-C.: Solutions d’un système d’équations analytiques réelles et applications. Ann. Inst. Fourier 26, 109–135 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  27. Tworzewski, P.: Intersections of analytic sets with linear subspaces. Ann. Scuola Norm. Sup. Pisa Cl. Sci. 17, 227–271 (1990)

    MathSciNet  MATH  Google Scholar 

  28. Varchenko, A.N.: Theorems on the topological equisingularity of families of algebraic varieties and families of polynomial mappings. Math. USSR Izviestija 6, 949–1008 (1972)

    Article  Google Scholar 

  29. Varchenko, A.N.: The relation between topological and algebro-geometric equisingularities according to Zariski. Funkcional. Anal. Appl. 7, 87–90 (1973)

    Article  MATH  Google Scholar 

  30. Varchenko, A.N.: Algebro-geometrical equisingularity and local topological classification of smooth mappings, Proceedings of the International Congress of Mathematicians (Vancouver, B.C., 1974), 1, pp 427–431. Canad. Math. Congress, Montreal, Que., (1975)

  31. Whitney, H.: Local properties of analytic varieties, in 1965 Differential and Combinatorial Topology (A Symposium in Honor of Marston Morse), pp. 205–244. Princeton Univ. Press, Princeton (1965)

  32. Whitney, H.: Complex analytic varieties. Addison-Wesley Publ. Co., Reading, Massachusetts (1972)

    MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam Parusiński.

Additional information

The authors were partially supported by ANR project STAAVF (ANR-2011 BS01 009). G. Rond was partially supported by ANR project SUSI (ANR-12-JS01-0002-01). M. Bilski was partially supported by the NCN Grant 2014/13/B/ST1/00543.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Bilski, M., Kurdyka, K., Parusiński, A. et al. Higher order approximation of analytic sets by topologically equivalent algebraic sets. Math. Z. 288, 1361–1375 (2018). https://doi.org/10.1007/s00209-017-1937-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-017-1937-5

Keywords

Mathematics Subject Classification

Navigation