Mathematische Zeitschrift

, Volume 288, Issue 1–2, pp 361–381 | Cite as

New classes of parameterized differential Galois groups

  • Annette BachmayrEmail author


This paper is on the inverse parameterized differential Galois problem. We show that surprisingly many groups do not occur as parameterized differential Galois groups over K(x) even when K is algebraically closed. We then combine the method of patching over fields with a suitable version of Galois descent to prove that certain groups do occur as parameterized differential Galois groups over k((t))(x). This class includes linear differential algebraic groups that are generated by finitely many unipotent elements and also semisimple connected linear algebraic groups.


Parameterized Picard–Vessiot theory Patching Linear differential algebraic groups Inverse differential Galois problem Galois descent 

Mathematics Subject Classification

12H05 20G15 14H25 34M50 34M03 34M15 



I wish to thank Michael F. Singer for helpful discussions concerning subgroups of \(\mathbb {G}_m\) that do not occur as parameterized Picard–Vessiot groups over K(x).


  1. 1.
    Arreche, C.: A Galois-theoretic proof of the differential transcendence of the incomplete Gamma function. J. Algebra 389, 119–127 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Buium, A., Cassidy, P.J.: Differential algebraic geometry and differential algebraic groups: from algebraic differential equations to Diophantine geometry. In: Bass, H., Buium, A., Cassidy, P.J. (eds.) Selected Works of Ellis Kolchin with Commentary, pp. 567–636. American Mathematical Society (1999)Google Scholar
  3. 3.
    Bachmayr, A., Harbater, D., Hartmann, J.: Differential Galois groups over Laurent series fields. Proc. Lond. Math. Soc. 112(3), 455–476 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Cassidy, P.J.: Differential algebraic groups. Am. J. Math. 94, 891–954 (1972)MathSciNetCrossRefzbMATHGoogle Scholar
  5. 5.
    Cassidy, P.J., Singer, M.F.: Galois theory of parameterized differential equations and linear differential algebraic groups. In: Bertrand, D., Enriquez, B., Mitschi, C., Sabbah, C., Schaefke, R. (eds.) Differential Equations and Quantum Groups, Volume 9 of IRMA Lectures in Mathematics and Theoretical Physics, pp. 113–155. European Mathematical Society, Zürich (2007)Google Scholar
  6. 6.
    Dreyfus, T.: A density theorem in parametrized differential Galois theory. Pac. J. Math. 271(1), 87–141 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Gillet, H., Gorchinskiy, S., Ovchinnikov, A.: Parameterized Picard–Vessiot extensions and Atiyah extensions. Adv. Math. 238, 322–411 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Hartmann, J.: On the inverse problem in differential Galois theory. J. Reine Angew. Math. 586, 21–44 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  9. 9.
    Harbater, D., Hartmann, J.: Patching over fields. Isr. J. Math. 176, 61–107 (2010)MathSciNetCrossRefzbMATHGoogle Scholar
  10. 10.
    Hardouin, C., Minchenko, A., Ovchinnikov, A.: Calculating Galois groups of differential equations with parameters and hypertranscendence. To appear in Mathematische Annalen, Preprint available at arXiv:1505.07068 (2016)
  11. 11.
    Kolchin, E.R.: Constrained extensions of differential fields. Adv. Math. 12, 141–170 (1974)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Kolchin, E.R.: Differential Algebraic Groups, Pure and Applied Mathematics, vol. 114. Academic Press Inc, Orlando (1985)zbMATHGoogle Scholar
  13. 13.
    Maier, A.: On the parameterized differential inverse Galois problem over \(k((t))(x)\). J. Algebra 428, 43–53 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  14. 14.
    Minchenko, A., Ovchinnikov, A., Singer, M.F.: Unipotent differential algebraic groups as parameterized differential Galois groups. J. Inst. Math. Jussieu 13(4), 671–700 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  15. 15.
    Minchenko, A., Ovchinnikov, A., Singer, M.F.: Reductive linear differential algebraic groups and the Galois groups of parameterized linear differential equations. Int. Math. Res. Not. IMRN 7, 1733–1793 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Mitschi, C., Singer, M.F.: Monodromy groups of parameterized linear differential equations with regular singularities. Bull. Lond. Math. Soc. 44(5), 913–930 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  17. 17.
    Singer, M.F.: Linear algebraic groups as parameterized Picard–Vessiot Galois groups. J. Algebra 373, 153–161 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Springer, T.A.: Linear Algebraic Groups, 2nd edn. Birkhäuser Boston Inc, Boston (2009)zbMATHGoogle Scholar
  19. 19.
    Wibmer, M.: Existence of \(\partial \)-parameterized Picard–Vessiot extensions over fields with algebraically closed constants. J. Algebra 361, 163–171 (2012)MathSciNetCrossRefzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2017

Authors and Affiliations

  1. 1.Mathematisches Institut der Universität BonnBonnGermany

Personalised recommendations