Skip to main content
Log in

Multi-brace cotensor Hopf algebras and quantum groups

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We give a construction of the whole quantum group associated to a symmetrizable Kac-Moody Lie algebra as a quantum quasi-symmetric algebra, a particular case of multi-brace cotensor Hopf algebras, in the spirit of the quantum shuffle construction of the “plus part”. All highest weight irreducible representations are constructed using this machinery. It also provides a systematic way to construct simple modules over the quantum double of a quantum group.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Andersen, H.H., Polo, P., Wen, K.-X.: Representations of quantum algebras. Invent. Math. 104(1), 1–59 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  2. Andruskiewitsch, N., Schneider, H.-J.: Lifting of quantum linear spaces and pointed Hopf algebras of order \(p^3\). J. Algebra 209, 658–691 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  3. Andruskiewitsch, N., Schneider, H.-J.: Pointed Hopf algebras. In: Montgomery, S., Schneider H.-J. (eds.) New Directions in Hopf Algebra Theory. Mathematical Sciences Research Institute Publications, vol. 43, pp. 1–68. Cambridge University Press, Cambridge (2002)

  4. Andruskiewitsch, N., Schneider, H.-J.: On the classification of finite-dimensional pointed Hopf algebras. Ann. Math. 171(1), 375–417 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  5. Andruskiewitsch, N., Radford, D., Schneider, H.-J.: Complete reducibility theorems for modules over pointed Hopf algebras. J. Algebra 324, 2932–2970 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  6. Baumann, P., Schmitt, F.: Classification of bicovariant differential calculi on quantum groups (a representation theoretic approach). Commun. Math. Phys. 194, 71–86 (1998)

    Article  MATH  Google Scholar 

  7. Bridgeland, T.: Quantum groups via Hall algebras of complexes, quantum groups via Hall algebras of complexes. Ann. Math. 177(2), 739–759 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Caldero, P.: Éléments ad-finis de certains groupes quantiques. C. R. Acad. Sci. Paris 316(1), 327–329 (1993)

    MathSciNet  MATH  Google Scholar 

  9. Fang, X.: Generalized virtual braid groups, quasi-shuffle product and quantum groups. Int. Math. Res. Not. 2015(6), 1717–1731 (2015)

    MATH  Google Scholar 

  10. Fang, X.: Generalized Matsumoto–Tits sections and quantum quasi-shuffle algebras. J. Algebr. Comb. 43(3), 693–714 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  11. Green, J.A.: Hall algebras, hereditary algebras and quantum groups. Invent. Math. 120(2), 361–377 (1995)

    Article  MathSciNet  MATH  Google Scholar 

  12. Heckenberger, I.: The Weyl groupoid of a Nichols algebra of diagonal type. Invent. Math. 164, 175–188 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  13. Jian, R.: Explicit results concerning quantum quasi-shuffle algebras and their applications. arXiv: 1105.4347

  14. Jian, R., Rosso, M.: Braided cofree Hopf algebras and quantum multi-brace algebras. J. R. Angew. Math. 667, 193–220 (2012)

    MATH  Google Scholar 

  15. Jian, R., Rosso, M., Zhang, J.: Quantum quasi-shuffle algebras. Lett. Math. Phys. 92, 1–16 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Joseph, A.: On the mock Peter–Weyl theorem and the Drinfel’d double of a double. J. R. Angew. Math. 507, 37–56 (1999)

    Article  MATH  Google Scholar 

  17. Joseph, A., Letzter, G.: Separation of variables for quantized enveloping algebras. Am. J. Math. 116(1), 127–177 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  18. Loday, J.-L., Ronco, M.: On the structure of cofree Hopf algebras. J. R. Angew. Math. 592, 123–155 (2006)

    MathSciNet  MATH  Google Scholar 

  19. Lusztig, G.: Quivers, perverse sheaves and quantized enveloping algebras. J. Am. Math. Soc. 4, 365–421 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  20. Masuoka, A.: Construction of quantized enveloping algebras by cocycle deformation. Arab. J. Sci. Eng. Sect. C Theme Issues 33(2), 387–406 (2008)

    MathSciNet  MATH  Google Scholar 

  21. Newman, K., Radford, D.: The cofree irreducible Hopf algebra on an algebra. Am. J. Math. 101(5), 1025–1045 (1979)

    Article  MathSciNet  MATH  Google Scholar 

  22. Nichols, N.D.: Bialgebras of type one. Commun. Algebra 6, 1521–1552 (1978)

    Article  MathSciNet  MATH  Google Scholar 

  23. Radford, D.: The structure of Hopf algebras with a projection. J. Algebra 92, 322–347 (1985)

    Article  MathSciNet  MATH  Google Scholar 

  24. Ringel, C.: Hall algebras and quantum groups. Invent. Math. 101, 583–592 (1990)

    Article  MathSciNet  MATH  Google Scholar 

  25. Rosso, M.: Quantum groups and quantum shuffles. Invent. Math. 133, 399–416 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  26. Rosso, M.: Irreducible representations of quantum groups from quantum shuffles, preprint

  27. Sweedler, M.E.: Hopf Algebras. W.A. Benjamin, New York (1969)

    MATH  Google Scholar 

  28. Taillefer, R.: Théories homologiques des algèbres de Hopf. Ph.D Thesis, Université Montpellier II (2001)

  29. Takeuchi, M.: Free Hopf algebras generated by coalgebras. J. Math. Soc. Jpn. 23, 561–581 (1971)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Xin Fang.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Fang, X., Rosso, M. Multi-brace cotensor Hopf algebras and quantum groups. Math. Z. 286, 657–678 (2017). https://doi.org/10.1007/s00209-016-1777-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-016-1777-8

Keywords

Navigation