Skip to main content
Log in

Automorphy of some residually \(S_5\) Galois representations

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

Let F be a totally real field and p an odd prime. We prove an automorphy lifting theorem for geometric representations \(\rho :G_F \rightarrow \mathrm {GL}_2(\overline{\mathbb {Q}}_{p})\) which lift irreducible residual representations \( {\overline{\rho }} \) that arise from Hilbert modular forms. The new result is that we allow the case \(p=5\), \( {\overline{\rho }} \) has projective image \(S_5\cong \mathrm {PGL}_2({\mathbb F}_5)\) and the fixed field of the kernel of the projective representation contains \(\zeta _5\). The usual Taylor–Wiles method does not work in this case as there are elements of dual Selmer that cannot be killed by allowing ramification at Taylor–Wiles primes. These elements arise from our hypothesis and the non-vanishing of \(H^1(\mathrm {PGL}_2({\mathbb F}_5),{{\mathrm{Ad}}}(1))\) where \({{\mathrm{Ad}}}(1)\) is the adjoint of the natural representation of \(\mathrm {GL}_2({\mathbb F}_5)\) twisted by the quadratic character of \(\mathrm {PGL}_2({\mathbb F}_5)\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Böckle, G., Arias-de-Reyna S: Deformation rings and images of Galois representations (in preparation)

  2. Barnet-Lamb, T., Gee, T., Geraghty, D.: Congruences between Hilbert modular forms: constructing ordinary lifts. Duke Math. J. 161(8), 1521–1580 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  3. Barnet-Lamb, T., Gee, T., Geraghty, D.: Serre weights for rank two unitary groups. Math. Ann. 356(4), 1551–1598 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  4. Barnet-Lamb, T., Gee, T., Geraghty, D., Taylor, R.: Potential automorphy and change of weight. Ann. Math. (2) 179(2), 501–609 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Breuil, C., Mézard, A.: Multiplicités modulaires et représentations de \({\rm GL}_2({\bf Z}_p)\) et de \({\rm Gal}(\overline{\bf Q}_p/{\bf Q}_p)\) en \(l=p\). Duke Math. J. 115(2), 205–310 (2002). With an appendix by Guy Henniart

  6. Boston, N.: Appendix to ‘On p-adic analytic families of Galois representations’, by B. Mazur. Compos. Math. 59(2), 261–264 (1986)

    Google Scholar 

  7. Carayol, H.: Sur les représentations \(l\)-adiques associées aux formes modulaires de Hilbert. Ann. Sci. École Norm. Sup. 19(3), 409–468 (1986)

    Article  MathSciNet  MATH  Google Scholar 

  8. Clozel, L., Harris, M., Taylor, R.: Automorphy for some \(l\)-adic lifts of automorphic mod \(l\) Galois representations. Publ. Math. Inst. Hautes Études Sci., 108:1–181, (2008). With Appendix A, summarizing unpublished work of Russ Mann, and Appendix B by Marie-France Vignéras

  9. Darmon, H., Diamond, F., Taylor, R.: Fermat’s last theorem. Elliptic curves. modular forms and Fermat’s last theorem (Hong Kong, 1993). International Press, Cambridge, MA (1997), pp. 2–140

  10. Henniart, G.: Caractérisation de la correspondance de Langlands locale par les facteurs \(\epsilon \) de paires. Invent. Math. 113(2), 339–350 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  11. Harris, M., Taylor, R.: The geometry and cohomology of some simple Shimura varieties, volume 151 of Annals of Mathematics Studies. Princeton University Press, Princeton, NJ (2001). With an appendix by Vladimir G. Berkovich

  12. Jarvis, F.: Mazur’s principle for totally real fields of odd degree. Compos. Math. 116(1), 39–79 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  13. Khare, C.: On isomorphisms between deformation rings and Hecke rings. Invent. Math. 154(1), 199–222 (2003). With an appendix by Gebhard Böckle

    Article  MathSciNet  MATH  Google Scholar 

  14. Khare, C.: Modularity of \(p\)-adic Galois representations via \(p\)-adic approximations. J. Théor. Nombres Bordeaux 16(1), 179–185 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kisin, M.: Moduli of finite flat group schemes, and modularity. Ann. Math. (2) 170(3), 1085–1180 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  16. Mazur, B.: Deforming Galois representations. In: Galois groups over Q (Berkeley, CA, 1987), vol 16 of Mathematical Sciences Research Institute Publications. Springer, New York, pp. 385–437 (1989)

  17. Serre, J.-P.: Topics in Galois theory, volume 1 of Research Notes in Mathematics. Jones and Bartlett Publishers, Boston, MA (1992). Lecture notes prepared by Henri Damon [Henri Darmon], With a foreword by Darmon and the author

  18. Skinner, C.M., Wiles, A.J.: Base change and a problem of Serre. Duke Math. J. 107(1), 15–25 (2001)

    Article  MathSciNet  MATH  Google Scholar 

  19. Tate, J.: Number theoretic background. In Automorphic forms, representations and \(L\)-functions (Proceedings of Symposia in Pure Mathematics, Oregon State University Corvallis, OR, 1977), Part 2, Proceedings of Symposia in Pure Mathematics, XXXIII, American Mathematical Society, Providence, pp. 3–26 (1979)

  20. Taylor, R.: On icosahedral Artin representations. II. Am. J. Math. 125(3), 549–566 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  21. Thorne, J.: On the automorphy of \(l\)-adic Galois representations with small residual image. J. Inst. Math. Jussieu 11(4), 855–920 (2012) With an appendix by Robert Guralnick. Florian Herzig, Richard Taylor and Thorne

  22. Thorne, J.A.: Automorphy of some residually dihedral Galois representations. Math. Ann. 364(1–2), 589–648 (2016)

    Article  MathSciNet  MATH  Google Scholar 

  23. Taylor, R., Wiles, A.: Ring-theoretic properties of certain Hecke algebras. Ann. Math. (2) 141(3), 553–572 (1995)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We are grateful to Toby Gee and to the anonymous referee for useful comments and corrections. C.K. was supported by NSF Grant DMS-1161671 and by a Humboldt Research Award, and thanks the Tata Institute of Fundamental Research, Mumbai for hospitality during the period in which much of the work on this paper was done. He thanks G. Böckle, F. Diamond, N. Fakhruddin, M. Larsen, D. Prasad, R. Ramakrishna and J.-P. Serre for helpful conversations and correspondence. This research was partially conducted during the period J.T. served as a Clay Research Fellow.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chandrashekhar B. Khare.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Khare, C.B., Thorne, J.A. Automorphy of some residually \(S_5\) Galois representations. Math. Z. 286, 399–429 (2017). https://doi.org/10.1007/s00209-016-1766-y

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-016-1766-y

Mathematics Subject Classification

Navigation