Advertisement

Mathematische Zeitschrift

, Volume 285, Issue 3–4, pp 739–793 | Cite as

Twisted symmetric square L-functions for \(\mathrm {GL}_n\)  and invariant trilinear forms

  • Eyal Kaplan
  • Shunsuke Yamana
Article

Abstract

Following the works of Bump and Ginzburg and of Takeda, we develop a theory of twisted symmetric square L-functions for \(\mathrm {GL}_n\). We characterize their pole in terms of certain trilinear period integrals, determine all irreducible summands of the discrete spectrum of \(\mathrm {GL}_n\) having nonvanishing trilinear periods, and construct nonzero local invariant trilinear forms on a certain family of induced representations.

Keywords

Symmetric square L-functions Exceptional representations Rankin–Selberg integral representation Distinguished representations 

Mathematics Subject Classification

11F66 11F70 

Notes

Acknowledgments

Yamana would like to thank Michael Harris for inviting him as a postdoctoral fellow at the Institut de mathématiques de Jussieu, where this paper was written. The research leading to these results has received funding from the European Research Council under the European Community’s Seventh Framework Programme (FP7/2007-2013)/ERC Grant agreement no. 290766 (AAMOT). Yamana is partially supported by JSPS Grant-in-Aid for Young Scientists (B) 26800017. Kaplan was partially supported by the ISF Center of Excellence Grant # 1691/10. We are very grateful to the anonymous referee for a very careful reading and detailed comments, which helped improve the exposition of the earlier version.

References

  1. 1.
    Arthur, J., Clozel, L.: Simple Algebras, Base Change, and the Advanced Theory of the Trace Formula, Annals of Mathematics Studies, vol. 120. Princeton University Press, Princeton (1989)zbMATHGoogle Scholar
  2. 2.
    Banks, W., Levy, J., Sepanski, M.: Block-compatible metaplectic cocycles. J. Reine Angew. Math. 507, 131–163 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Bump, D., Ginzburg, D.: Symmetric square \(L\)-functions on \({{\rm GL}}(r)\). Ann. Math. (2) 136(1), 137–205 (1992)MathSciNetCrossRefzbMATHGoogle Scholar
  4. 4.
    Cogdell, J.W., Piatetski Shapiro, I.I.: Remarks on Rankin–Selberg convolution. In: Hida, H., Ramakrishnan. D., Shahdi, F. (eds.) Contributions to Automorphic forms, Geometry, and Number Theory, pp. 255–278. Johns Hopkins University Press, Baltimore (2004)Google Scholar
  5. 5.
    Franke, J.: Harmonic analysis in weighted \(L_2\)-spaces. Ann. Sci. École Norm. Super. Sér. 4 31, 181–279 (1998)MathSciNetzbMATHGoogle Scholar
  6. 6.
    Gelbart, S., Piatetski-Shapiro, I.I.: Distinguished representations and modular forms of half-integral weight. Invent. Math. 59, 145–188 (1980)MathSciNetCrossRefzbMATHGoogle Scholar
  7. 7.
    Ginzburg, D., Rallis, S., Soudry, D.: The descent map from automorphic representations of \({{\rm GL}}(n)\) to classical groups. World Scientific Publishing Co. Pte. Ltd., Hackensack (2011)CrossRefzbMATHGoogle Scholar
  8. 8.
    Helminck, G.F.: Eisenstein Series on the Metaplectic Group: an Algebraic Approach, Mathematical Centre Tracts, vol. 161. Mathematisch Centrum, Amsterdam (1983)zbMATHGoogle Scholar
  9. 9.
    Hundley, J., Sayag, E.: Descent construction for \({{\rm GSpin}}\) groups. Mem. Am. Math. Soc. 243(1148) (2016)Google Scholar
  10. 10.
    Ichino, A., Yamana, S.: Periods of automorphic forms: the case of \(({{\rm GL}}_{n+1}\times {{\rm GL}}_n,{{\rm GL}}_n)\). Compos. Math. 151, 665–712 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Jacquet, H., Lapid, E., Rogawski, J.: Periods of automorphic forms. J. Am. Math. Soc. 12, 173–240 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Jacquet, H., Shalika, J.: On Euler products and the classification of automorphic representations I and II. Am. J. Math. 103(3), 499–558, 777–815 (1981)Google Scholar
  13. 13.
    Jacquet, H., Shalika, J.: Exterior square L-functions. In: Clozel, L., Milne, S. (eds.) Automorphic forms, Shimura varieties, and L-functions, vol. II (Ann Arbor, MI, 1988), Perspect. Math., vol. 11, pp. 143–226. Academic Press, Boston, MA (1990)Google Scholar
  14. 14.
    Kable, A.: Exceptional representations of the metaplectic double cover of the general linear group. Ph.D. dissertation, Oklahoma State University, Stillwater (1997)Google Scholar
  15. 15.
    Kable, A.: The tensor product of exceptional representations on the general linear group. Ann. Sci. École Norm. Super. Sér. 4 34, 741–769 (2001)MathSciNetzbMATHGoogle Scholar
  16. 16.
    Kaplan, E.: The theta period of a cuspidal automorphic representation of \({{\rm GL}}(n)\). Int. Math. Res. Not. 2015(8), 2168–2209 (2015)MathSciNetzbMATHGoogle Scholar
  17. 17.
    Kaplan, E.: The double cover of odd general spin groups, small representations and applications. J. Inst. Math. Jussieu, FirstView 8, 1–63 (2016). doi: 10.1017/S1474748015000250 Google Scholar
  18. 18.
    Kazhdan, D.A., Patterson, S.J.: Metaplectic forms. Inst. Hautes Etudes Sci. Publ. Math. 59, 35–142 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  19. 19.
    Lapid, E., Mao, Z.: On the asymptotics of Whittaker functions. Represent. Theory 13, 63–81 (2002)MathSciNetCrossRefzbMATHGoogle Scholar
  20. 20.
    Lapid, E., Rogawski, J.: Periods of Eisenstein series: the Galois case. Duke Math. J. 120(1), 153–226 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  21. 21.
    Luo, W., Rudnick, Z., Sarnak, P.: On the generalized Ramanujan conjecture for \({{\rm GL}}(n)\). Proc. Symp. Pure Math. 66(2), 301–310 (1999)MathSciNetCrossRefzbMATHGoogle Scholar
  22. 22.
    Mœglin, C., Waldspurger, J.-L.: Le spectre résiduel de \({{\rm GL}}(n)\). Ann. Sci. École Norm. Super. Sér. 4 22, 605–674 (1989)zbMATHGoogle Scholar
  23. 23.
    Mœglin, C., Waldspurger, J.-L.: Spectral Decomposition and Eisenstein Series, Cambridge Tracts in Mathematics, vol. 113. Cambridge University Press, Cambridge (1995)CrossRefzbMATHGoogle Scholar
  24. 24.
    Patterson, S.J., Piatetski-Shapiro, I.I.: The symmetric-square \(L\)-function attached to a cuspidal automorphic representation of \({{\rm GL}}_3\). Math. Ann. 283, 551–572 (1989)MathSciNetCrossRefzbMATHGoogle Scholar
  25. 25.
    Ranga, R.: Rao, On some explicit formulas in the theory of Well representation. Pac. J. Math. 157, 335–371 (1993)CrossRefzbMATHGoogle Scholar
  26. 26.
    Shahidi, F.: A proof of Langlands’ conjecture on Plancherel measures: complementary series for \(p\)-adic groups. Ann. Math. (2) 132(2), 273–330 (1990)MathSciNetCrossRefzbMATHGoogle Scholar
  27. 27.
    Shahidi, F.: On non-vanishing of twisted symmetric and exterior square \(L\)-functions for \({{\rm GL}}(n)\). Pac. J. Math. 181, 311–322 (1997)MathSciNetCrossRefzbMATHGoogle Scholar
  28. 28.
    Shimura, G.: On the holomorphy of certain Dirichlet series. Proc. Lond. Math. Soc. 31(3), 79–98 (1975)MathSciNetCrossRefzbMATHGoogle Scholar
  29. 29.
    Tadić, M.: Classification of unitary representations in irreducible representations of general linear group (non-Archimedean case). Ann. Sci. École Norm. Super. Sér. 4 19, 335–382 (1986)MathSciNetzbMATHGoogle Scholar
  30. 30.
    Takeda, S.: The twisted symmetric square \(L\)-function of \({{\rm GL}}(r)\). Duke Math. 163, 175–266 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Takeda, S.: On a certain metaplectic Eisenstein series and the twisted symmetric square \(L\)-function. Math. Z. 281, 103–157 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  32. 32.
    Waldspurger, J.-L.: La formule de Plancherel pour les groupes p-adiques (d’après Harish-Chandra). J. Inst. Math. Jussieu 2(2), 235–333 (2003)MathSciNetCrossRefzbMATHGoogle Scholar
  33. 33.
    Weil, A.: Sur certains groupes d’opérateurs unitaires. Acta Math. 111(1), 143–211 (1964)MathSciNetCrossRefzbMATHGoogle Scholar
  34. 34.
    Yamana, S.: On the Siegel–Weil formula: the case of singular forms. Compos. Math. 147, 1003–1021 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  35. 35.
    Yamana, S.: Symplectic periods of the continuous spectrum of \({{\rm GL}}(2n)\). Ann. Inst. Fourier 64(4), 1561–1580 (2014)MathSciNetCrossRefzbMATHGoogle Scholar
  36. 36.
    Yamana, S.: Periods of residual automorphic forms. J. Funct. Anal. 268, 1078–1104 (2015)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Yamana, S.: Periods of automorphic forms: the trilinear case, J. Inst. Math. Jussieu. doi: 10.1017/S1474748015000377
  38. 38.
    Zelevinsky, A.: Induced representations of reductive \({\mathfrak{p}}\)-adic groups, II: on irreducible representations of \({{\rm GL}}(n)\). Ann. Sci. École Norm. Super. Sér. 4 13, 165–210 (1980)MathSciNetzbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of MathematicsOhio State UniversityColumbusUSA
  2. 2.Hakubi CenterKyotoJapan
  3. 3.Graduate School of MathematicsKyoto UniversityKitashirakawa, KyotoJapan
  4. 4.Department of Mathematics, Bar-Ilan UniversityRamat GanIsrael

Personalised recommendations