Skip to main content

Advertisement

Log in

Determinantal representations and Bézoutians

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

A major open question in convex algebraic geometry is whether all hyperbolicity cones are spectrahedral, i.e. the solution sets of linear matrix inequalities. We will use sum-of-squares decompositions of certain bilinear forms called Bézoutians to approach this problem. More precisely, we show that for every smooth hyperbolic polynomial h there is another hyperbolic polynomial q such that \(q \cdot h\) has a definite determinantal representation. Besides commutative algebra, the proof relies on results from real algebraic geometry.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bochnak, J., Coste, M., Roy, M.-F.: Real algebraic geometry. Ergeb. Math. Grenzgeb. 36(3). Springer, Berlin (1998)

  2. Bourbaki, N.: Elements of Mathematics Algebra I. Springer, Berlin (1989)

    MATH  Google Scholar 

  3. Brändén, P.: Obstructions to determinantal representability. Adv. Math. 226(2), 1202–1212 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Brändén, P.: Hyperbolicity cones of elementary symmetric polynomials are spectrahedral. Optim. Lett. 8(5), 1773–1782 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  5. Burton, S., Vinzant, C., Youm, Y.: A Real Stable Extension of the Vámos Matroid Polynomial. arXiv preprint. arXiv:1411.2038 (2014)

  6. Gårding, L.: Linear hyperbolic differential equations with constant coefficients. Acta Math. 85, 2–62 (1951)

    Article  MathSciNet  Google Scholar 

  7. Gårding, L.: An inequality for hyperbolic polynomials. J. Math. Mech. 8, 957–965 (1959)

    MathSciNet  Google Scholar 

  8. Gondard, D., Ribenboim, P.: Le 17e probléme de Hilbert pour les matrices. Bull. Sci. Math. 98(2), 49–56 (1974)

    MathSciNet  MATH  Google Scholar 

  9. Güler, O.: Hyperbolic polynomials and interior point methods for convex programming. Math. Oper. Res. 22(2), 350–377 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  10. Helton, J.W., McCullough, S., Vinnikov, V.: Noncommutative convexity arises from linear matrix inequalities. J. Funct. Anal. 240, 105–191 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  11. Helton, J.W., Nie, J.: Sufficient and necessary conditions for semidefinite representability of convex hulls and sets. SIAM J. Optim. 20(2), 759–791 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  12. Helton, JW., Nie, J.: Semidefinite representation of convex sets. Math. Program. 122(1, Ser. A):21–64 (2010)

  13. Helton, J.W., Vinnikov, V.: Linear matrix inequality representation of sets. Commun. Pure Appl. Math. 60(5), 654–674 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  14. Hillar, C., Nie, J.: An elementary and constructive solution to Hilbert’s 17th Problem for matrices. Proc. Am. Math. Soc. 136, 73–76 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kreĭn, M.G., Naĭmark, M.A.: The method of symmetric and Hermitian forms in the theory of the separation of the roots of algebraic equations. Linear Multilinear Algebra 10(4), 265–308 (1981)

    Article  MathSciNet  MATH  Google Scholar 

  16. Kummer, M.: A note on the hyperbolicity cone of the specialized Vámos polynomial. Acta Appl. Math. (2015). doi:10.1007/s10440-015-0036-z

  17. Kummer, M., Plaumann, D., Vinzant, C.: Hyperbolic polynomials, interlacers, and sums of squares. Math. Program. 153(1, Ser. B), 223–245 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lax, P.D.: Differential equations, difference equations and matrix theory. Commun. Pure Appl. Math. 11, 175–194 (1958)

    Article  MathSciNet  MATH  Google Scholar 

  19. Netzer, T., Plaumann, D., Thom, A.: Determinantal representations and the Hermite matrix. Mich. Math. J. 62(2), 407–420 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Netzer, T., Sanyal, R.: Smooth hyperbolicity cones are spectrahedral shadows. Math. Program. 153(1, Ser. B), 213–221 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  21. Netzer, T., Thom, A.: Hyperbolic polynomials and generalized clifford algebras. Discrete Comput. Geom. 51(4), 802–814 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Plaumann, D., Vinzant, C.: Determinantal representations of hyperbolic plane curves: an elementary approach. J. Symb. Comput. 57, 48–60 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. Quarez, R.: Symmetric determinantal representation of polynomials. Linear Algebra Appl. 436(9), 3642–3660 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  24. Renegar, J.: Hyperbolic programs, and their derivative relaxations. Found. Comput. Math. 6(1), 59–79 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  25. Shamovich, E., Vinnikov, V.: Livsic-Type Determinantal Representations and Hyperbolicity. arXiv preprint. arXiv:1410.2826 (2014)

  26. Sinn, R.: Algebraic boundaries of \({\rm SO}(2)\)-orbitopes. Discrete Comput. Geom. 50(1), 219–235 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  27. Vandenberghe, L., Boyd, S.: Semidefinite programming. SIAM Rev. 38(1), 49–95 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  28. Vinnikov, V.: LMI Representations of convex semialgebraic sets and determinantal representations of algebraic hypersurfaces: past, present, and future. In: Dym, H., de Oliveira, M.C., Putinar, M. (eds.) Mathematical Methods in Systems, Optimization, and Control, pp. 325–349. Birkhäuser/Springer, Basel (2012)

    Chapter  Google Scholar 

  29. Wolkowicz, H., Saigal, R., Vandenberghe, L. (eds.): Handbook of Semidefinite Programming. Theory, algorithms, and applications. International Series in Operations Research and Management Science, vol. 27. Kluwer Academic Publishers, Boston (2000)

    MATH  Google Scholar 

Download references

Acknowledgments

This work is part of my Ph.D thesis. I would like to thank my advisor Claus Scheiderer for his encouragement and the Studienstiftung des deutschen Volkes for their financial and ideal support. I also thank Christoph Hanselka, Tim Netzer, Daniel Plaumann, Eli Shamovich, Bernd Sturmfels, Andreas Thom and Cynthia Vinzant for helpful discussions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mario Kummer.

Additional information

The author was supported by the Studienstiftung des deutschen Volkes.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Kummer, M. Determinantal representations and Bézoutians. Math. Z. 285, 445–459 (2017). https://doi.org/10.1007/s00209-016-1715-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-016-1715-9

Keywords

Mathematics Subject Classification

Navigation