Skip to main content
Log in

Around 16-dimensional quadratic forms in \(I^3_q\)

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We determine the indexes of all orthogonal Grassmannians of a generic 16-dimensional quadratic form in \(I^3_q\). This is applied to show that the 3-Pfister number of the form is \(\ge \)4. Other consequences are: a new and characteristic-free proof of a recent result by Chernousov–Merkurjev on proper subforms in \(I^2_q\) (originally available in characteristic 0) as well as a new and characteristic-free proof of an old result by Hoffmann–Tignol and Izhboldin–Karpenko on 14-dimensional quadratic forms in \(I^3_q\) (originally available in characteristic \(\ne \)2). We also suggest an extension of the method, based on investigation of the topological filtration on the Grothendieck ring of a maximal orthogonal Grassmanian, which applies to quadratic forms of dimension higher than 16.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

We’re sorry, something doesn't seem to be working properly.

Please try refreshing the page. If that doesn't work, please contact support so we can address the problem.

References

  1. Brosnan, P., Reichstein, Z., Vistoli, A.: Essential dimension, spinor groups, and quadratic forms. Ann. Math. (2) 171(1), 533–544 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  2. Buch, A.S., Ravikumar, V.: Pieri rules for the \(K\)-theory of cominuscule Grassmannians. J. Reine Angew. Math. 668, 109–132 (2012)

    MathSciNet  MATH  Google Scholar 

  3. Chernousov, V., Merkurjev, A.: Essential dimension of spinor and Clifford groups. Algebra Number Theory 8(2), 457–472 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Clifford, E., Thomas, H., Yong, A.: \(K\)-theoretic Schubert calculus for \({\rm OG}(n,2n+1)\) and jeu de taquin for shifted increasing tableaux. J. Reine Angew. Math. 690, 51–63 (2014)

    MathSciNet  MATH  Google Scholar 

  5. Elman, R., Karpenko, N., Merkurjev, A.: The Algebraic and Geometric Theory of Quadratic Forms. American Mathematical Society Colloquium Publications, vol. 56. American Mathematical Society, Providence (2008)

    Book  MATH  Google Scholar 

  6. Hoffmann, D.W., Tignol, J.-P.: On 14-dimensional quadratic forms in \(I^3\), 8-dimensional forms in \(I^2\), and the common value property. Doc. Math. 3, 189–214 (1998)

    MathSciNet  MATH  Google Scholar 

  7. Izhboldin, O.T., Karpenko, N.A.: Some new examples in the theory of quadratic forms. Math. Z. 234(4), 647–695 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  8. Karpenko, N.: Chow groups of quadrics and index reduction formula. Nova J. Algebra Geom. 3(4), 357–379 (1995)

    MathSciNet  MATH  Google Scholar 

  9. Karpenko, N.A.: Algebro-geometric invariants of quadratic forms. Algebra i Analiz 2(1), 141–162 (1990)

    MathSciNet  MATH  Google Scholar 

  10. Karpenko, N.A.: The Grothendieck ring of quadrics, and gamma filtration. In: Rings and modules. Limit theorems of probability theory, no 3 (Russian), vol. 256, pp. 39–61. Izd. St.-Peterbg. Univ., St. Petersburg (1993)

  11. Karpenko, N.A.: On topological filtration for Severi–Brauer varieties. In: \(K\)-Theory and Algebraic Geometry: Connections with Quadratic Forms and Division Algebras (Santa Barbara, CA, 1922), vol. 58 of Proceedings of the Symposium on Pure Mathematics, pp. 275–277. American Mathematical Society, Providence, RI (1995)

  12. Karpenko, N.A.: Codimension 2 cycles on Severi–Brauer varieties. K-Theory 13 4, 305–330 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  13. Merkurjev, A.S.: Invariants of algebraic groups and retract rationality of classifying spaces (2015, preprint). http://www.math.ucla.edu/~merkurev/papers/retract-class-space.pdf

  14. Merkurjev, A.S.: Essential dimension: a survey. Transform. Groups 18(2), 415–481 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  15. Merkurjev, A.S., Panin, I.A.: \(K\)-theory of algebraic tori and toric varieties. K-Theory 12 2, 101–143 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  16. Panin, I.A.: On the algebraic \(K\)-theory of twisted flag varieties. K-Theory 8 6, 541–585 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  17. Quillen, D.: Higher algebraic \(K\)-theory. I. In: Algebraic \(K\)-Theory, I: Higher \(K\)-Theories (Proceedings of the Conference, Battelle Memorial Institute, Seattle, Washington, 1972), Lecture Notes in Mathematics, vol. 341, pp. 85–147. Springer, Berlin (1973)

  18. Rost, M.: On 14-dimensional quadratic forms, their spinors, and the difference of two octonion algebras (1994, preprint). http://www.math.uni-bielefeld.de/~rost/data/14-dim.pdf

  19. Totaro, B.: The torsion index of the spin groups. Duke Math. J. 129(2), 249–290 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  20. Vishik, A.: On the Chow groups of quadratic Grassmannians. Doc. Math. 10, 111–130 (2005)

    MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Nikita A. Karpenko.

Additional information

This work has been accomplished during author’s stay at the Universität Duisburg-Essen; it has been supported by a Discovery Grant from the National Science and Engineering Board of Canada.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Karpenko, N.A. Around 16-dimensional quadratic forms in \(I^3_q\) . Math. Z. 285, 433–444 (2017). https://doi.org/10.1007/s00209-016-1714-x

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-016-1714-x

Keywords

Mathematics Subject Classfication

Navigation