Abstract
We consider graded Cartan matrices of the symmetric groups and the Iwahori-Hecke algebras of type A at roots of unity. These matrices are \({\mathbb {Z}}[v,v^{-1}]\)-valued and may also be interpreted as Gram matrices of the Shapovalov form on sums of weight spaces of a basic representation of an affine quantum group. We present a conjecture predicting the invariant factors of these matrices and give evidence for the conjecture by proving its implications under a localization and certain specializations of the ring \({\mathbb {Z}}[v,v^{-1}]\). This proves and generalizes a conjecture of Ando-Suzuki-Yamada on the invariants of these matrices over \({\mathbb {Q}}[v,v^{-1}]\) and also generalizes the first author’s recent proof of the Külshammer-Olsson-Robinson conjecture over \({\mathbb {Z}}\).
Similar content being viewed by others
Notes
Our \(x_r^{(i)}\) and \(y_r^{(i)}\) correspond respectively to \(\tilde{P}^-_{i,r}\) and \(h'_{i,-r}\) in loc. cit.
Abbreviations
- \({\mathfrak {S}}_n\) :
-
Symmetric group (1.1)
- \({\mathcal {H}}_n ({\mathbb {F}};q)\) :
-
Hecke algebra (1.1)
- \(\eta _{\ell } \in k_{\ell }\) :
-
A primitive \(\ell \)-th root of unity in a field (1.1)
- \({\mathsf {Mod}({A})}\) :
-
The category of finite-dimensional left A-modules (1.1)
- \({{\mathrm{\mathsf {PC}}}}(D)\) :
-
Projective cover of D (1.1)
- \(C_A\) :
-
Cartan matrix of an algebra A (1.1)
- \(\equiv _R\) :
-
Unimodular equivalence of matrices (1.2)
- \(\ell _k\) :
-
\(\ell /(\ell ,k)\) (1.2)
- \(I^v_\ell (\lambda ), J^v_\ell (\lambda )\) :
- \({{\mathrm{\mathsf {max-Spec}}}}(R)\) :
-
The set of maximal ideals of a ring R (1.7.1)
- \({{\mathrm{\mathsf {Mat}}}}_\ell (R), {{\mathrm{\mathsf {Mat}}}}_S(R)\) :
-
Matrix algebra (1.7.2)
- \(1_S\) :
-
Identity matrix (1.7.2)
- \({{\mathrm{\mathsf {diag}}}}(\{r_s \mid s\in S\})\) :
-
Diagonal matrix (1.7.2)
- \(\bigoplus _i M_i\) :
-
Block-diagonal matrix (1.7.2)
- \(\nu _p\) :
-
p-adic valuation (1.7.3)
- \({\mathbb {N}}\) :
-
The set of nonnegative integers (1.7.4)
- \(\mathsf {Prm}\) :
-
The set of prime numbers (1.7.4)
- \(n_{\Pi }\) :
-
\(\Pi \)-part of n (1.7.4)
- \(\Pi ', p'\) :
-
The complements of \(\Pi , \{p\}\) in \(\mathsf {Prm}\) (1.7.4)
- (a, b):
-
Greatest common divisor of a and b (1.7.4)
- \({\mathbf {k}}\) :
-
The function field \({\mathbb {Q}}(v)\) (1.7.5)
- \(\mathscr {A}\) :
-
The ring of Laurent polynomials \({\mathbb {Z}}[v,v^{-1}]\) (1.7.5)
- \(\mathsf {bar}\) :
-
Bar involution \(v\mapsto v^{-1}\) on \({\mathbf {k}}\) (1.7.5)
- \({{\mathrm{\mathsf {Infl}}}}_t\) :
-
The inflation map \(v\mapsto v^t\) on \(\mathscr {A}\) (1.7.5)
- \({[n]}_m\) :
-
Quantum integer (1.7.5)
- \({[n]}_m !\) :
-
Quantum factorial (1.7.5)
- \(\equiv _G\) :
-
Conjugacy relation in a group G (1.7.6)
- \(g_p, g_{p'}\) :
-
p-part and \(p'\)-part of g (1.7.6)
- \(m_k (\lambda )\) :
-
Multiplicity of k in a partition \(\lambda \) (1.7.7)
- \(\ell (\lambda )\) :
-
Length of a partition \(\lambda \) (1.7.7)
- \(|\lambda |\) :
-
Size of a partition \(\lambda \) (1.7.7)
- \(\mathsf {Par}, \mathsf {Par}(n)\) :
-
Set of partitions (1.7.7)
- \(\mathsf {CRP}_s(n)\) :
-
The set of s-class regular partitions of n (1.7.7)
- \(\mathsf {RP}_s (n)\) :
-
The set of s-regular partitions of n (1.7.7)
- \(\mathsf {Par}_m (n)\) :
-
The set of m-multipartitions of n (1.7.7)
- \(\mathsf {Par}_p (n,\nu )\) :
-
The set of partitions of n with “\(p'\)-part” \(\nu \) (1.7.7)
- \(\mathsf {Pow}_p (n)\) :
-
The set of p-power partitions of n (1.7.7)
- \(\lambda +\mu \) :
-
Sum of two partitions (1.7.7)
- \(\Lambda \) :
-
Ring of symmetric functions (2.1)
- \(\chi _V\) :
-
Character of \({\mathfrak {S}}_n\) afforded by module V (2.1)
- \(p_\mu , p_k\) :
-
Power sum symmetric functions (2.1)
- \(C_\mu \) :
-
Conjugacy class corresponding to a partition \(\mu \) (2.1)
- \(z_{\mu }\) :
-
Order of centralizer of an element of \(C_\mu \) (2.1)
- \(\mathsf {ch}\) :
-
Isometry between a Grothendieck group and symmetric functions (2.1)
- \({\mathfrak {S}}_\lambda \) :
-
Parabolic subgroup of \({\mathfrak {S}}_n\) (2.1)
- \(\mathsf {triv}_{{\mathfrak {S}}_\lambda }\) :
-
Trivial representation of \({\mathfrak {S}}_\lambda \) (2.1)
- \(M_n\) :
-
Table of permutation characters of \({\mathfrak {S}}_n\) (2.1)
- \(h_{\mu }\) :
-
Complete symmetric function (2.1)
- \(m_\mu \) :
-
Monomial symmetric function (2.1)
- \({\mathcal {M}}_{\lambda ,\mu }\) :
-
A certain set of size \(M_{\lambda ,\mu }\) (2.1)
- \(N_n^{(p)}\) :
-
“p-local” submatrix of \(M_n\) (2.2)
- \(L_n^{(p)}\) :
-
A certain block-diagonal matrix (2.2)
- \(a_{\theta }^{(p)}(n)\) :
- \({{\mathrm{\mathsf {Sym}}}}^m\) :
-
Symmetric power functor (2.3)
- \({{\mathrm{\mathsf {Mult}}}}_m(\ell )\) :
-
The set of weakly increasing m-tuples of elements of \(\{1,\dots ,\ell \}\) (2.3)
- \(\Omega _{\ell ,d}\) :
-
A set of tuples, which is in bijection with \(\mathsf {Par}_{\ell } (d)\) (2.3 )
- \(S^d (A)\) :
- \(\Lambda _\ell =\bigotimes _{t=1}^\ell \Lambda ^{(t)}\) :
-
\(\ell \)-colored ring of symmetric functions (2.3)
- \(m_{\mu }^{(t)}, h_\mu ^{(t)}, p_{\mu }^{(t)}\) :
-
Images of \(m_\mu , h_\mu , p_\mu \) in \(\Lambda ^{(t)}\) (2.3)
- \(M_{\ell ,d}, K_{\ell ,d}\) :
- \({\mathcal {P}}, {\mathcal {P}^\vee }\) :
-
Weight lattice and its dual (3.1)
- \(\Pi , \Pi ^\vee \) :
-
Sets of simple roots and corresponding coroots (3.1)
- \(Q^+\) :
-
Positive part of the root lattice (3.1)
- \({\mathcal {P}}^+\) :
-
Set of dominant integral weights (3.1)
- \(\Lambda _i\) :
-
A dominant integral weight (3.1)
- \(W=W(X)\) :
-
Weyl group (3.1)
- \(U_v = U_v (X)\) :
-
Quantum group (3.1)
- \(U_v^+, U_v^0, U_v^-\) :
-
Subalgebras in the triangular decomposition of \(U_v\) (3.1)
- \(V(\lambda )\) :
-
Highest weight module (3.1)
- \(1_{\lambda }\) :
-
Highest weight vector (3.1)
- \(\langle \cdot ,\cdot \rangle _{\mathsf {QSh}}, \langle \cdot ,\cdot \rangle _{\mathsf {RSh}}\) :
- \(P(\lambda )\) :
-
The set of weights of \(V(\lambda )\) (3.1)
- \(V(\lambda )_\mu \) :
-
\(\mu \)-weight space of \(V(\lambda )\) (3.1)
- \((U_v^-)^\mathscr {A}\) :
-
An \(\mathscr {A}\)-lattice in \(U_v^-\) (3.1)
- \(V(\lambda )^{\mathscr {A}}, V(\lambda )_\nu ^\mathscr {A}\) :
-
\(\mathscr {A}\)-lattices in \(V(\lambda ), V(\lambda )_\nu \) (3.1)
- \(\mathsf {QSh}^\mathsf {M}_{\lambda ,\mu }, \mathsf {RSh}^\mathsf {M}_{\lambda ,\mu }\) :
- \(\fallingdotseq \) :
-
An equivalence relation on matrices (3.1)
- \(\widehat{X}\) :
-
Extended Cartan matrix of X (3.2)
- \(\delta \) :
-
Null root (3.2)
- \({\mathsf {Mod}_{\mathsf {gr}}({A})}\) :
-
Category of finite-dimensional graded A-modules (3.3)
- \(M_n\) :
-
Graded n-component of a graded module M (3.3)
- \(M\langle k\rangle \) :
-
Graded module M with grading shifted down by k (3.3)
- \(\mathcal S(A)\) :
-
Set of representatives of simple graded A-modules (3.3)
- \(C_A^v\) :
-
Graded Cartan matrix of A (3.3)
- \(\mathsf {Proj}_\mathsf {gr}({A})\) :
-
Category of projective graded A-modules (3.3)
- \(\mathsf {Bl}_\ell (n)\) :
-
A certain set of pairs \((\rho ,d)\) where \(\rho \) is an \(\ell \)-core (3.3)
- \(\mathsf {Cok}_{T}\) :
-
Cokernel of the map given by a matrix T (4.1)
- \(\equiv '_R\) :
-
Unimodular pseudo-equivalence of matrices, see Definition 4.1 (4.1)
- \(\equiv ^F_R\) :
- \({{\mathrm{\mathsf {Fitt}}}}_d (T)\) :
-
d-th Fitting ideal of a matrix T (4.1)
- \(\Phi _n, \Psi _n\) :
-
Cyclotomic polynomial and its scaled version (4.2)
- \(\rho _z^{(p)}\) :
- \(\varphi _{s,n}\) :
-
A bijection from s-regular to s-class regular partitions (4.2)
- \(\beta _M\) :
-
Auto-bijection of \(\mathsf {Par}\) from Definition 4.6 (4.2)
- \(g_{k,t}^{(\ell ,p)}, f_{k,t}^{(\ell )}, I_{\ell ,p}^v (\lambda )\) :
-
Certain products of quantum integers, see Definition 4.7 (4.2)
- \({\mathcal {F}}_{k,t,z}^{(\ell ,p)}, {\mathcal {G}}_{k,t,z}^{(\ell ,p)}\) :
-
Certain sets of integers related to \(f_{k,t}^{(\ell )}, g_{k,t}^{(\ell ,p)}\) (4.2)
- \(\lambda ^{<r},\lambda ^{\ge r},\overline{\lambda }^{\, r}\) :
References
Ando, M., Suzuki, T., Yamada, H.-F.: Combinatorics for graded Cartan matrices of the Iwahori-Hecke algebra of type A. Ann. Comb. 17, 427–442 (2013)
Bessenrodt, C.: A bijection for Lebesgue’s partition identity in the spirit of Sylvester. Discret. Math. 132, 1–10 (1994)
Bessenrodt, C., Hill, D.: Cartan invariants of symmetric groups and Iwahori-Hecke algebras. J. Lond. Math. Soc. 81, 113–128 (2010)
Brundan, J., Kleshchev, A.: Cartan determinants and Shapovalov forms. Math. Ann. 324, 431–449 (2002)
Brundan, J., Kleshchev, A.: Blocks of cyclotomic Hecke algebras and Khovanov-Lauda algebras. Invent. Math. 178, 451–484 (2009)
Brundan, J., Kleshchev, A.: Graded decomposition numbers for cyclotomic Hecke algebras. Adv. Math. 222, 1883–1942 (2009)
De Concini, C., Kac, V., Kazhdan, D.: Boson-fermion correspondence over \({\mathbb{Z}}\), Infinite-dimensional Lie algebras and groups (Luminy-Marseille, 1988). Advanced Series in Mathematical Physics, vol. 7. World Scientific Publishing, Teaneck, NJ (1989)
Deng, B., Du, J., Parshall, B., Wang, J.: Finite Dimensional Algebras and Quantum Groups. Mathematical surveys and monographs, vol. 150. American Mathematical Society, Providence (2008)
Dipper, R., James, G.: Blocks and idempotents of Hecke algebras of general linear groups. Proc. Lond. Math. Soc. 54, 57–82 (1987)
Donkin, S.: Representations of Hecke algebras and characters of symmetric groups, Studies in memory of Issai Schur, Progr. Math. 210, Birkhaüser Boston, Boston, MA, pp. 49–67 (2003)
Evseev, A.: Generalised Cartan invariants of symmetric groups. Trans. Am. Math. Soc. 367, 2823–2851 (2015)
Filaseta, M.: Coverings of the integers associated with an irreducibility theorem of A. Schinzel. In: Number theory for the millennium, II (Urbana, IL, 2000). A K Peters, Natick, MA, pp. 1–24 (2002)
Fulton, W.: Young tableaux, London Mathematical Society Student Texts 35. Cambridge University Press, Cambridge (1997)
Geck, M., Pfeiffer, G.: Characters of Finite Coxeter Groups and Iwahori-Hecke Algebras, London Mathematical Society Monographs, New Series, 21. The Clarendon Press, Oxford University Press, New York (2000)
Hill, D.: Elementary divisors of the Shapovalov form on the basic representation of Kac-Moody Lie algebras. J. Algebra 319, 5208–5246 (2008)
Isaacs, M.: Character Theory of Finite Groups. Academic Press, New York (1976)
Kac, V.G.: Infinite Dimensional Lie Algebras, 3rd edn. Cambridge University Press, Cambridge (1990)
Kashiwara, M.: On crystal bases. Representations of groups (Banff, AB, 1994). CMS Conference Proceedings, vol. 16, pp. 155–197. Am. Math. Soc., Providence, RI (1995)
Kashiwara, M.: On crystal bases of the Q-analogue of universal enveloping algebras. Duke Math. J. 63, 465–516 (1991)
Külshammer, B., Olsson, J.B., Robinson, G.R.: Generalized blocks for symmetric groups. Invent. Math. 151, 513–552 (2003)
Khovanov, M., Lauda, A.: A diagrammatic approach to categorification of quantum groups. I. Represent. Theory 13, 309–347 (2009)
Kunz, E.: Introduction to Commutative Algebra and Algebraic Geometry. Birkhäuser, Boston (1985)
Lakshmibai, V.: Bases for quantum Demazure modules. Representations of groups (Banff, AB, 1994). CMS Conference Proceedings, vol. 16, pp. 199–216. Am. Math. Soc., Providence, RI (1995)
Lam, T.Y.: A First Course in Noncommutative Rings, Graduate Texts in Mathematics, 131. Springer, New York (2001)
Lusztig, G.: Introduction to quantum groups, Reprint of the 1994 edn. Modern Birkhäuser Classics. Birkhäuser/Springer, New York (2010)
Lusztig, G.: Finite dimensional Hopf algebras arising from quantized universal enveloping algebras. J. Am. Math. Soc. 3, 257–296 (1990)
Levy, L.S., Robson, J.C.: Matrices and pairs of modules. J. Algebra 29, 427–454 (1974)
Macdonald, I.G.: Symmetric Functions and Hall Polynomials, 2nd edn. Oxford University Press, Oxford (1995)
Matsumura, H.: Commutative Algebra, vol. 56, 2nd edn. Benjamin/Cummings Publishing, San Francisco (1980)
Northcott, D.G.: Finite Free Resolutions. Cambridge Tracts in Mathematics, vol. 71. Cambridge University Press, Cambridge (1976)
Năstăsescu, C., Van Oystaeyen, F.: Methods of graded rings. Lecture Notes in Mathematics, vol. 1836. Springer-Verlag, Berlin (2004)
Mines, R., Richman, F., Ruitenburg, W.: A Course in Constructive Algebra. Springer, New York (1988)
Rouquier, R.: 2-Kac-Moody algebras, arXiv:0812.5023
Rouquier, R.: Automorphismes, graduations et catégories triangulées. J. Inst. Math. Jussieu 10, 713–751 (2011)
Tsuchioka, S.: Graded Cartan determinants of the symmetric groups. Trans. Am. Math. Soc. 366, 2019–2040 (2014)
Acknowledgments
S.T. thanks Yuichiro Hoshi, Yoichi Mieda and Hiraku Kawanoue for discussions on §6. In particular, Theorem 6.5 is due to Kawanoue (see Remark 6.8).
Author information
Authors and Affiliations
Corresponding author
Additional information
The list of symbols gives references to subsections where symbols are defined.
Anton Evseev was partially supported by the EPSRC Postdoctoral Fellowship EP/G050244 and the EPSRC grant EP/L027283. Shunsuke Tsuchioka was supported in part by JSPS Kakenhi Grants 11J08363 and 26800005.
Rights and permissions
About this article
Cite this article
Evseev, A., Tsuchioka, S. On graded Cartan invariants of symmetric groups and Hecke algebras. Math. Z. 285, 177–213 (2017). https://doi.org/10.1007/s00209-016-1703-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00209-016-1703-0
Keywords
- Symmetric groups
- Hecke algebras
- Graded representation theory
- Modular representation theory
- Külshammer-Olsson-Robinson conjecture
- Khovanov-Lauda-Rouquier algebras
- Generalized blocks
- Categorification
- Lie theory
- Quantum groups