Skip to main content
Log in

On graded Cartan invariants of symmetric groups and Hecke algebras

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We consider graded Cartan matrices of the symmetric groups and the Iwahori-Hecke algebras of type A at roots of unity. These matrices are \({\mathbb {Z}}[v,v^{-1}]\)-valued and may also be interpreted as Gram matrices of the Shapovalov form on sums of weight spaces of a basic representation of an affine quantum group. We present a conjecture predicting the invariant factors of these matrices and give evidence for the conjecture by proving its implications under a localization and certain specializations of the ring \({\mathbb {Z}}[v,v^{-1}]\). This proves and generalizes a conjecture of Ando-Suzuki-Yamada on the invariants of these matrices over \({\mathbb {Q}}[v,v^{-1}]\) and also generalizes the first author’s recent proof of the Külshammer-Olsson-Robinson conjecture over \({\mathbb {Z}}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

Notes

  1. Our \(x_r^{(i)}\) and \(y_r^{(i)}\) correspond respectively to \(\tilde{P}^-_{i,r}\) and \(h'_{i,-r}\) in loc. cit.

Abbreviations

\({\mathfrak {S}}_n\) :

Symmetric group (1.1)

\({\mathcal {H}}_n ({\mathbb {F}};q)\) :

Hecke algebra (1.1)

\(\eta _{\ell } \in k_{\ell }\) :

A primitive \(\ell \)-th root of unity in a field (1.1)

\({\mathsf {Mod}({A})}\) :

The category of finite-dimensional left A-modules (1.1)

\({{\mathrm{\mathsf {PC}}}}(D)\) :

Projective cover of D (1.1)

\(C_A\) :

Cartan matrix of an algebra A (1.1)

\(\equiv _R\) :

Unimodular equivalence of matrices (1.2)

\(\ell _k\) :

\(\ell /(\ell ,k)\) (1.2)

\(I^v_\ell (\lambda ), J^v_\ell (\lambda )\) :

Laurent polynomials in Definition 1.8 (1.4)

\({{\mathrm{\mathsf {max-Spec}}}}(R)\) :

The set of maximal ideals of a ring R (1.7.1)

\({{\mathrm{\mathsf {Mat}}}}_\ell (R), {{\mathrm{\mathsf {Mat}}}}_S(R)\) :

Matrix algebra (1.7.2)

\(1_S\) :

Identity matrix (1.7.2)

\({{\mathrm{\mathsf {diag}}}}(\{r_s \mid s\in S\})\) :

Diagonal matrix (1.7.2)

\(\bigoplus _i M_i\) :

Block-diagonal matrix (1.7.2)

\(\nu _p\) :

p-adic valuation (1.7.3)

\({\mathbb {N}}\) :

The set of nonnegative integers (1.7.4)

\(\mathsf {Prm}\) :

The set of prime numbers (1.7.4)

\(n_{\Pi }\) :

\(\Pi \)-part of n (1.7.4)

\(\Pi ', p'\) :

The complements of \(\Pi , \{p\}\) in \(\mathsf {Prm}\) (1.7.4)

(ab):

Greatest common divisor of a and b (1.7.4)

\({\mathbf {k}}\) :

The function field \({\mathbb {Q}}(v)\) (1.7.5)

\(\mathscr {A}\) :

The ring of Laurent polynomials \({\mathbb {Z}}[v,v^{-1}]\) (1.7.5)

\(\mathsf {bar}\) :

Bar involution \(v\mapsto v^{-1}\) on \({\mathbf {k}}\) (1.7.5)

\({{\mathrm{\mathsf {Infl}}}}_t\) :

The inflation map \(v\mapsto v^t\) on \(\mathscr {A}\) (1.7.5)

\({[n]}_m\) :

Quantum integer (1.7.5)

\({[n]}_m !\) :

Quantum factorial (1.7.5)

\(\equiv _G\) :

Conjugacy relation in a group G (1.7.6)

\(g_p, g_{p'}\) :

p-part and \(p'\)-part of g (1.7.6)

\(m_k (\lambda )\) :

Multiplicity of k in a partition \(\lambda \) (1.7.7)

\(\ell (\lambda )\) :

Length of a partition \(\lambda \) (1.7.7)

\(|\lambda |\) :

Size of a partition \(\lambda \) (1.7.7)

\(\mathsf {Par}, \mathsf {Par}(n)\) :

Set of partitions (1.7.7)

\(\mathsf {CRP}_s(n)\) :

The set of s-class regular partitions of n (1.7.7)

\(\mathsf {RP}_s (n)\) :

The set of s-regular partitions of n (1.7.7)

\(\mathsf {Par}_m (n)\) :

The set of m-multipartitions of n (1.7.7)

\(\mathsf {Par}_p (n,\nu )\) :

The set of partitions of n with “\(p'\)-part” \(\nu \) (1.7.7)

\(\mathsf {Pow}_p (n)\) :

The set of p-power partitions of n (1.7.7)

\(\lambda +\mu \) :

Sum of two partitions (1.7.7)

\(\Lambda \) :

Ring of symmetric functions (2.1)

\(\chi _V\) :

Character of \({\mathfrak {S}}_n\) afforded by module V (2.1)

\(p_\mu , p_k\) :

Power sum symmetric functions (2.1)

\(C_\mu \) :

Conjugacy class corresponding to a partition \(\mu \) (2.1)

\(z_{\mu }\) :

Order of centralizer of an element of \(C_\mu \) (2.1)

\(\mathsf {ch}\) :

Isometry between a Grothendieck group and symmetric functions (2.1)

\({\mathfrak {S}}_\lambda \) :

Parabolic subgroup of \({\mathfrak {S}}_n\) (2.1)

\(\mathsf {triv}_{{\mathfrak {S}}_\lambda }\) :

Trivial representation of \({\mathfrak {S}}_\lambda \) (2.1)

\(M_n\) :

Table of permutation characters of \({\mathfrak {S}}_n\) (2.1)

\(h_{\mu }\) :

Complete symmetric function (2.1)

\(m_\mu \) :

Monomial symmetric function (2.1)

\({\mathcal {M}}_{\lambda ,\mu }\) :

A certain set of size \(M_{\lambda ,\mu }\) (2.1)

\(N_n^{(p)}\) :

p-local” submatrix of \(M_n\) (2.2)

\(L_n^{(p)}\) :

A certain block-diagonal matrix (2.2)

\(a_{\theta }^{(p)}(n)\) :

A rational number from Definition 2.8 (2.2)

\({{\mathrm{\mathsf {Sym}}}}^m\) :

Symmetric power functor (2.3)

\({{\mathrm{\mathsf {Mult}}}}_m(\ell )\) :

The set of weakly increasing m-tuples of elements of \(\{1,\dots ,\ell \}\) (2.3)

\(\Omega _{\ell ,d}\) :

A set of tuples, which is in bijection with \(\mathsf {Par}_{\ell } (d)\) (2.3 )

\(S^d (A)\) :

Matrix in Definition 2.13 (2.3)

\(\Lambda _\ell =\bigotimes _{t=1}^\ell \Lambda ^{(t)}\) :

\(\ell \)-colored ring of symmetric functions (2.3)

\(m_{\mu }^{(t)}, h_\mu ^{(t)}, p_{\mu }^{(t)}\) :

Images of \(m_\mu , h_\mu , p_\mu \) in \(\Lambda ^{(t)}\) (2.3)

\(M_{\ell ,d}, K_{\ell ,d}\) :

Transition matrices in Definition 2.14 (2.3)

\({\mathcal {P}}, {\mathcal {P}^\vee }\) :

Weight lattice and its dual (3.1)

\(\Pi , \Pi ^\vee \) :

Sets of simple roots and corresponding coroots (3.1)

\(Q^+\) :

Positive part of the root lattice (3.1)

\({\mathcal {P}}^+\) :

Set of dominant integral weights (3.1)

\(\Lambda _i\) :

A dominant integral weight (3.1)

\(W=W(X)\) :

Weyl group (3.1)

\(U_v = U_v (X)\) :

Quantum group (3.1)

\(U_v^+, U_v^0, U_v^-\) :

Subalgebras in the triangular decomposition of \(U_v\) (3.1)

\(V(\lambda )\) :

Highest weight module (3.1)

\(1_{\lambda }\) :

Highest weight vector (3.1)

\(\langle \cdot ,\cdot \rangle _{\mathsf {QSh}}, \langle \cdot ,\cdot \rangle _{\mathsf {RSh}}\) :

Versions of Shapovalov form from Proposition 3.2 (3.1)

\(P(\lambda )\) :

The set of weights of \(V(\lambda )\) (3.1)

\(V(\lambda )_\mu \) :

\(\mu \)-weight space of \(V(\lambda )\) (3.1)

\((U_v^-)^\mathscr {A}\) :

An \(\mathscr {A}\)-lattice in \(U_v^-\) (3.1)

\(V(\lambda )^{\mathscr {A}}, V(\lambda )_\nu ^\mathscr {A}\) :

\(\mathscr {A}\)-lattices in \(V(\lambda ), V(\lambda )_\nu \) (3.1)

\(\mathsf {QSh}^\mathsf {M}_{\lambda ,\mu }, \mathsf {RSh}^\mathsf {M}_{\lambda ,\mu }\) :

Gram matrices of Shapovalov forms, see Definition 3.3 (3.1)

\(\fallingdotseq \) :

An equivalence relation on matrices (3.1)

\(\widehat{X}\) :

Extended Cartan matrix of X (3.2)

\(\delta \) :

Null root (3.2)

\({\mathsf {Mod}_{\mathsf {gr}}({A})}\) :

Category of finite-dimensional graded A-modules (3.3)

\(M_n\) :

Graded n-component of a graded module M (3.3)

\(M\langle k\rangle \) :

Graded module M with grading shifted down by k (3.3)

\(\mathcal S(A)\) :

Set of representatives of simple graded A-modules (3.3)

\(C_A^v\) :

Graded Cartan matrix of A (3.3)

\(\mathsf {Proj}_\mathsf {gr}({A})\) :

Category of projective graded A-modules (3.3)

\(\mathsf {Bl}_\ell (n)\) :

A certain set of pairs \((\rho ,d)\) where \(\rho \) is an \(\ell \)-core (3.3)

\(\mathsf {Cok}_{T}\) :

Cokernel of the map given by a matrix T (4.1)

\(\equiv '_R\) :

Unimodular pseudo-equivalence of matrices, see Definition 4.1 (4.1)

\(\equiv ^F_R\) :

Fitting equivalence of matrices, see Definition 4.1 (4.1)

\({{\mathrm{\mathsf {Fitt}}}}_d (T)\) :

d-th Fitting ideal of a matrix T (4.1)

\(\Phi _n, \Psi _n\) :

Cyclotomic polynomial and its scaled version (4.2)

\(\rho _z^{(p)}\) :

Function from Definition 4.5 (4.2)

\(\varphi _{s,n}\) :

A bijection from s-regular to s-class regular partitions (4.2)

\(\beta _M\) :

Auto-bijection of \(\mathsf {Par}\) from Definition 4.6 (4.2)

\(g_{k,t}^{(\ell ,p)}, f_{k,t}^{(\ell )}, I_{\ell ,p}^v (\lambda )\) :

Certain products of quantum integers, see Definition 4.7 (4.2)

\({\mathcal {F}}_{k,t,z}^{(\ell ,p)}, {\mathcal {G}}_{k,t,z}^{(\ell ,p)}\) :

Certain sets of integers related to \(f_{k,t}^{(\ell )}, g_{k,t}^{(\ell ,p)}\) (4.2)

\(\lambda ^{<r},\lambda ^{\ge r},\overline{\lambda }^{\, r}\) :

p-power partitions from Definition 5.6 (5.2)

References

  1. Ando, M., Suzuki, T., Yamada, H.-F.: Combinatorics for graded Cartan matrices of the Iwahori-Hecke algebra of type A. Ann. Comb. 17, 427–442 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bessenrodt, C.: A bijection for Lebesgue’s partition identity in the spirit of Sylvester. Discret. Math. 132, 1–10 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  3. Bessenrodt, C., Hill, D.: Cartan invariants of symmetric groups and Iwahori-Hecke algebras. J. Lond. Math. Soc. 81, 113–128 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  4. Brundan, J., Kleshchev, A.: Cartan determinants and Shapovalov forms. Math. Ann. 324, 431–449 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  5. Brundan, J., Kleshchev, A.: Blocks of cyclotomic Hecke algebras and Khovanov-Lauda algebras. Invent. Math. 178, 451–484 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  6. Brundan, J., Kleshchev, A.: Graded decomposition numbers for cyclotomic Hecke algebras. Adv. Math. 222, 1883–1942 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  7. De Concini, C., Kac, V., Kazhdan, D.: Boson-fermion correspondence over \({\mathbb{Z}}\), Infinite-dimensional Lie algebras and groups (Luminy-Marseille, 1988). Advanced Series in Mathematical Physics, vol. 7. World Scientific Publishing, Teaneck, NJ (1989)

    Google Scholar 

  8. Deng, B., Du, J., Parshall, B., Wang, J.: Finite Dimensional Algebras and Quantum Groups. Mathematical surveys and monographs, vol. 150. American Mathematical Society, Providence (2008)

    MATH  Google Scholar 

  9. Dipper, R., James, G.: Blocks and idempotents of Hecke algebras of general linear groups. Proc. Lond. Math. Soc. 54, 57–82 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  10. Donkin, S.: Representations of Hecke algebras and characters of symmetric groups, Studies in memory of Issai Schur, Progr. Math. 210, Birkhaüser Boston, Boston, MA, pp. 49–67 (2003)

  11. Evseev, A.: Generalised Cartan invariants of symmetric groups. Trans. Am. Math. Soc. 367, 2823–2851 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  12. Filaseta, M.: Coverings of the integers associated with an irreducibility theorem of A. Schinzel. In: Number theory for the millennium, II (Urbana, IL, 2000). A K Peters, Natick, MA, pp. 1–24 (2002)

  13. Fulton, W.: Young tableaux, London Mathematical Society Student Texts 35. Cambridge University Press, Cambridge (1997)

    Google Scholar 

  14. Geck, M., Pfeiffer, G.: Characters of Finite Coxeter Groups and Iwahori-Hecke Algebras, London Mathematical Society Monographs, New Series, 21. The Clarendon Press, Oxford University Press, New York (2000)

    MATH  Google Scholar 

  15. Hill, D.: Elementary divisors of the Shapovalov form on the basic representation of Kac-Moody Lie algebras. J. Algebra 319, 5208–5246 (2008)

    Article  MATH  Google Scholar 

  16. Isaacs, M.: Character Theory of Finite Groups. Academic Press, New York (1976)

    MATH  Google Scholar 

  17. Kac, V.G.: Infinite Dimensional Lie Algebras, 3rd edn. Cambridge University Press, Cambridge (1990)

    Book  MATH  Google Scholar 

  18. Kashiwara, M.: On crystal bases. Representations of groups (Banff, AB, 1994). CMS Conference Proceedings, vol. 16, pp. 155–197. Am. Math. Soc., Providence, RI (1995)

  19. Kashiwara, M.: On crystal bases of the Q-analogue of universal enveloping algebras. Duke Math. J. 63, 465–516 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  20. Külshammer, B., Olsson, J.B., Robinson, G.R.: Generalized blocks for symmetric groups. Invent. Math. 151, 513–552 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  21. Khovanov, M., Lauda, A.: A diagrammatic approach to categorification of quantum groups. I. Represent. Theory 13, 309–347 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  22. Kunz, E.: Introduction to Commutative Algebra and Algebraic Geometry. Birkhäuser, Boston (1985)

    MATH  Google Scholar 

  23. Lakshmibai, V.: Bases for quantum Demazure modules. Representations of groups (Banff, AB, 1994). CMS Conference Proceedings, vol. 16, pp. 199–216. Am. Math. Soc., Providence, RI (1995)

  24. Lam, T.Y.: A First Course in Noncommutative Rings, Graduate Texts in Mathematics, 131. Springer, New York (2001)

    Book  Google Scholar 

  25. Lusztig, G.: Introduction to quantum groups, Reprint of the 1994 edn. Modern Birkhäuser Classics. Birkhäuser/Springer, New York (2010)

  26. Lusztig, G.: Finite dimensional Hopf algebras arising from quantized universal enveloping algebras. J. Am. Math. Soc. 3, 257–296 (1990)

    MathSciNet  MATH  Google Scholar 

  27. Levy, L.S., Robson, J.C.: Matrices and pairs of modules. J. Algebra 29, 427–454 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  28. Macdonald, I.G.: Symmetric Functions and Hall Polynomials, 2nd edn. Oxford University Press, Oxford (1995)

    MATH  Google Scholar 

  29. Matsumura, H.: Commutative Algebra, vol. 56, 2nd edn. Benjamin/Cummings Publishing, San Francisco (1980)

    MATH  Google Scholar 

  30. Northcott, D.G.: Finite Free Resolutions. Cambridge Tracts in Mathematics, vol. 71. Cambridge University Press, Cambridge (1976)

    Book  MATH  Google Scholar 

  31. Năstăsescu, C., Van Oystaeyen, F.: Methods of graded rings. Lecture Notes in Mathematics, vol. 1836. Springer-Verlag, Berlin (2004)

  32. Mines, R., Richman, F., Ruitenburg, W.: A Course in Constructive Algebra. Springer, New York (1988)

    Book  MATH  Google Scholar 

  33. Rouquier, R.: 2-Kac-Moody algebras, arXiv:0812.5023

  34. Rouquier, R.: Automorphismes, graduations et catégories triangulées. J. Inst. Math. Jussieu 10, 713–751 (2011)

    Article  Google Scholar 

  35. Tsuchioka, S.: Graded Cartan determinants of the symmetric groups. Trans. Am. Math. Soc. 366, 2019–2040 (2014)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

S.T. thanks Yuichiro Hoshi, Yoichi Mieda and Hiraku Kawanoue for discussions on §6. In particular, Theorem 6.5 is due to Kawanoue (see Remark 6.8).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shunsuke Tsuchioka.

Additional information

The list of symbols gives references to subsections where symbols are defined.

Anton Evseev was partially supported by the EPSRC Postdoctoral Fellowship EP/G050244 and the EPSRC grant EP/L027283. Shunsuke Tsuchioka was supported in part by JSPS Kakenhi Grants 11J08363 and 26800005.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Evseev, A., Tsuchioka, S. On graded Cartan invariants of symmetric groups and Hecke algebras. Math. Z. 285, 177–213 (2017). https://doi.org/10.1007/s00209-016-1703-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-016-1703-0

Keywords

Mathematics Subject Classification

Navigation