Mathematische Zeitschrift

, Volume 284, Issue 3–4, pp 1035–1052 | Cite as

Large \({\varvec{p}}^{\prime }\)-orbits for \({\varvec{p}}\)-nilpotent linear groups

  • David GluckEmail author


Let G be a p-nilpotent linear group on a finite vector space V of characteristic p. Suppose that |G||V| is odd. Let P be a Sylow p-subgroup of G. We show that there exist vectors \(v_1\) and \(v_2\) in V such that \(C_G(v_1) \cap C_G(v_2)=P\). A striking conjecture of Malle and Navarro offers a simple global criterion for the nilpotence (in the sense of Broué and Puig) of a p-block of a finite group. Our result implies that this conjecture holds for groups of odd order.


p-Nilpotent linear groups Orbit sizes Nilpotent blocks 

Mathematics Subject Classification

20C20 20C15 20H30 


  1. 1.
    Dolfi, S.: Large orbits in coprime actions of solvable groups. Trans. Am. Math. Soc. 360, 135–152 (2008)MathSciNetCrossRefzbMATHGoogle Scholar
  2. 2.
    Dolfi, S., Navarro, G.: Large orbits of elements centralized by a Sylow subgroup. Arch. Math. 93, 299–304 (2009)MathSciNetCrossRefzbMATHGoogle Scholar
  3. 3.
    Espuelas, A.: Large character degrees of groups of odd order. Ill. J. Math. 35, 499–505 (1991)MathSciNetzbMATHGoogle Scholar
  4. 4.
    Feit, W.: The Representation Theory of Finite Groups. North-Holland, Amsterdam (1982)zbMATHGoogle Scholar
  5. 5.
    Gorenstein, D.: Finite Groups. Harper and Row, New York (1968)zbMATHGoogle Scholar
  6. 6.
    Gramain, J.: On a conjecture of G. Malle and G. Navarro on nilpotent blocks. Electron. J. Comb. 18, 14 (2011)MathSciNetzbMATHGoogle Scholar
  7. 7.
    Halasi, Z., Podoski, K.: Every coprime linear group admits a base of size two. Trans. Am. Math. Soc. 368, 5857–5887 (2016)MathSciNetCrossRefzbMATHGoogle Scholar
  8. 8.
    Isaacs, I.M.: Character Theory of Finite Groups. Academic Press, New York (1976)zbMATHGoogle Scholar
  9. 9.
    Isaacs, I.M.: Finite Group Theory. American Mathematical Society, Providence (2008)CrossRefzbMATHGoogle Scholar
  10. 10.
    Isaacs, I.M.: Characters of solvable and symplectic groups. Am. J. Math. 95, 594–635 (1973)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Kessar, R., Malle, G.: Quasi-isolated blocks and Brauer’s height zero conjecture. Ann. Math. 178, 321–384 (2013)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Malle, G., Navarro, G.: Blocks with equal height zero degrees. Trans. Am. Math. Soc. 363, 6647–6669 (2011)MathSciNetCrossRefzbMATHGoogle Scholar
  13. 13.
    Manz, O., Wolf, T.R.: Representations of Solvable Groups. Cambridge University Press, Cambridge (1993)CrossRefzbMATHGoogle Scholar
  14. 14.
    Vdovin, E.: Regular orbits of solvable linear \(p^{\prime }\)-groups. Sib. Elektron. Mat. Izv. 4, 345–360 (2007)MathSciNetzbMATHGoogle Scholar
  15. 15.
    Weiss, E.: Algebraic Number Theory. McGraw-Hill, New York (1963)zbMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of MathematicsWayne State UniversityDetroitUSA

Personalised recommendations