Advertisement

Mathematische Zeitschrift

, Volume 284, Issue 3–4, pp 961–987 | Cite as

Scaling of conformal blocks and generalized theta functions over \(\overline{\mathcal {M}}_{g,n}\)

  • Prakash Belkale
  • Angela Gibney
  • Anna Kazanova
Article
  • 140 Downloads

Abstract

By way of intersection theory on \(\overline{\mathcal {M}}_{g,n}\), we show that geometric interpretations for conformal blocks, as sections of ample line bundles over projective varieties, do not have to hold at points on the boundary. We show such a translation would imply certain recursion relations for first Chern classes of these bundles. While recursions can fail, geometric interpretations are shown to hold under certain conditions.

Notes

Acknowledgments

P.B. was supported on NSF Grant DMS-0901249, and A.G. on DMS-1201268 and in part by DMS-1344994 (RTG in Algebra, Algebraic Geometry, and Number Theory, at UGA). We thank the anonymous referee for their time and thoughtful feedback.

References

  1. 1.
    Alexeev, V., Gibney, A., Swinarski, D.: Higher-level \({\mathfrak{sl}} _2\) conformal blocks divisors on \(\overline{M}_{0, n}\). Proc. Edinb. Math. Soc. (2) 57(1), 7–30 (2014). doi: 10.1017/S0013091513000941 MathSciNetzbMATHCrossRefGoogle Scholar
  2. 2.
    Baldoni, V., Boysal, A., Vergne, M.: Multiple Bernoulli series and volumes of moduli spaces of flat bundles over surfaces. J. Symb. Comput. 68(Part 2), 27–60 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  3. 3.
    Beauville, A.: Conformal blocks, fusion rules and the Verlinde formula. In: Proceedings of the Hirzebruch 65 Conference on Algebraic Geometry (Ramat Gan, 1993), Israel Mathematical Conference Proceedings, 9, Bar-Ilan University, Ramat Gan, pp. 75–96 (1996)Google Scholar
  4. 4.
    Beauville, A., Laszlo, Y.: Conformal blocks and generalized theta functions. Commun. Math. Phys. 164(2), 385–419 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  5. 5.
    Belkale, P.: Quantum generalization of the Horn conjecture. J. Am. Math. Soc. 21(2), 365–408 (2008)MathSciNetzbMATHCrossRefGoogle Scholar
  6. 6.
    Belkale, P.: Geometric proof of a conjecture of Fulton. Adv. Math. 216(1), 346–357 (2007)MathSciNetzbMATHCrossRefGoogle Scholar
  7. 7.
    Belkale, P., Gibney, A., Mukhopadhyay, S.: Nonvanishing of conformal blocks divisors. Transformation Groups (2015). arXiv:1410.2459 [math.AG]
  8. 8.
    Belkale, P., Gibney, A., Mukhopadhyay, S.: Vanishing and identities of conformal blocks divisors. Algebr. Geom. 2(1), 62–90 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  9. 9.
    Belkale, P., Kumar, S.: The multiplicative eigenvalue problem and deformed quantum cohomology (2013). arXiv:1310.3191 [math.AG]
  10. 10.
    Bertini, E.: Introduzione alla geometria proiettiva degli iperspazi. Enrico Spoerri, Pisa (1907)zbMATHGoogle Scholar
  11. 11.
    Beltrametti, M.C., Sommese, A.J.: The Adjunction Theory of Complex Projective Varieties, de Gruyter Expositions in Mathematics, vol. 16. Walter de Gruyter & Co., Berlin (1995)CrossRefGoogle Scholar
  12. 12.
    Bertram, A.: Generalized SU(2) theta functions. Invent. Math. 113(2), 351–372 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  13. 13.
    Bolognesi, M., Giansiracusa, N.: Factorization of point configurations, cyclic covers, and conformal blocks. J. Eur. Math. Soc. (JEMS) 17(10), 2453–2471 (2015)MathSciNetzbMATHCrossRefGoogle Scholar
  14. 14.
    Coble, A.B.: The quartic curve as related to conics. Trans. Am. Math. Soc. 4(1), 65–85 (1903)MathSciNetzbMATHCrossRefGoogle Scholar
  15. 15.
    Daskalopoulos, G., Wentworth, R.: Local degeneration of the moduli space of vector bundles and factorization of rank two theta functions. I. Math. Ann. 297(3), 417–466 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  16. 16.
    Del Pezzo, P.: Sulle superficie di ordine n immerse nello spazio di n + 1 dimensioni. Rend. della R. delle Scienze Fis. e Mat. di Napoli 24, 212–216 (1885)Google Scholar
  17. 17.
    Desale, U.V., Ramanan, S.: Classification of vector bundles of rank 2 on hyperelliptic curves. Invent. Math. 38(2), 161–185 (1976/1977)Google Scholar
  18. 18.
    Eisenbud, D.: The Geometry of Syzygies, Graduate Texts in Mathematics. A Second Course in Commutative Algebra and Algebraic Geometry, vol. 229. Springer, New York (2005)zbMATHGoogle Scholar
  19. 19.
    Eisenbud, D., Goto, S.: Linear free resolutions and minimal multiplicity. J. Algebra 88(1), 89–133 (1984)MathSciNetzbMATHCrossRefGoogle Scholar
  20. 20.
    Eisenbud, D., Harris, J.: On varieties of minimal degree (a centennial account), Algebraic geometry, Bowdoin, 1985 (Brunswick, Maine, 1985). In: Proceeding of Symposia in Pure Mathematics, vol. 46, pp. 3–13. American Mathematical Society, Providence (1987)Google Scholar
  21. 21.
    Fakhruddin, N.: Chern classes of conformal blocks. In: Compact Moduli Spaces and Vector Bundles, Contemporary Mathematics, vol. 564, pp. 145–176. American Mathematical Society, Providence (2012)Google Scholar
  22. 22.
    Faltings, G.: A proof for the Verlinde formula. J. Algebraic Geom. 3(2), 347–374 (1994)MathSciNetzbMATHGoogle Scholar
  23. 23.
    Faltings, G.: Moduli-stacks for bundles on semistable curves. Math. Ann. 304(3), 489–515 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  24. 24.
    Fedorchuk, M.: Cyclic covering morphisms on \(\overline{M}_{0,n}\) (2011). arXiv:1105.0655
  25. 25.
    Fuchs, J., Schweigert, C.: The action of outer automorphisms on bundles of chiral blocks. Commun. Math. Phys. 206(3), 691–736 (1999)MathSciNetzbMATHCrossRefGoogle Scholar
  26. 26.
    Fujita, T.: Classification Theories of Polarized Varieties. London Mathematical Society Lecture Note Series, vol. 155. Cambridge University Press, Cambridge (1990)CrossRefGoogle Scholar
  27. 27.
    Giansiracusa, N.: Conformal blocks and rational normal curves. J. Algebraic Geom. 22(4), 773–793 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  28. 28.
    Giansiracusa, N., Gibney, A.: The cone of type A, level 1 conformal block divisors. Adv. Math. 231, 798–814 (2012)MathSciNetzbMATHCrossRefGoogle Scholar
  29. 29.
    Gibney, A., Jensen, D., Moon, H.-B., Swinarski, D.: Veronese quotient models of \(\overline{{{\rm M}}}_{0, n}\) and conformal blocks. Mich. Math. J. 62(4), 721–751 (2013)MathSciNetzbMATHCrossRefGoogle Scholar
  30. 30.
    Goren, R.: Characterization and algebraic deformations of projective space. J. Math. Kyoto Univ. 8, 41–47 (1968)MathSciNetzbMATHGoogle Scholar
  31. 31.
    Grayson, D.R., Stillman, M.E.: Macaulay2: a software system for research in algebraic geometry. Version 1.6 (2014). http://www.math.uiuc.edu/Macaulay2/
  32. 32.
    Griffiths, P., Harris, J.: Principles of Algebraic Geometry. Pure and Applied Mathematics. Wiley, New York (1978)zbMATHGoogle Scholar
  33. 33.
    Harris, J.: A bound on the geometric genus of projective varieties. Ann. Scuola Norm. Sup. Pisa Cl. Sci. (4) 8(1), 35–68 (1981)MathSciNetzbMATHGoogle Scholar
  34. 34.
    Hobson, N.: Quantum Kostka and the rank one problem for \(\mathfrak{s}l_{2m}\) (2015). arXiv:1508.06952 [math.AG]
  35. 35.
    Kausz, I.: A canonical decomposition of generalized theta functions on the moduli stack of Gieseker vector bundles. J. Algebraic Geom. 14(3), 439–480 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  36. 36.
    Kazanova, A.: On \(S_n\)-invariant conformal blocks vector bundles of rank one on \(\overline{M}_{0, n}\). Manuscr. Math. 149(1–2), 107–115 (2016)MathSciNetzbMATHCrossRefGoogle Scholar
  37. 37.
    Kouvidakis, A., Pantev, T.: The automorphism group of the moduli space of semistable vector bundles. Math. Ann. 302(2), 225–268 (1995)MathSciNetzbMATHCrossRefGoogle Scholar
  38. 38.
    Kumar, S., Narasimhan, M.S., Ramanathan, A.: Infinite Grassmannians and moduli spaces of \(G\)-bundles. Math. Ann. 300(1), 41–75 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  39. 39.
    Krashen, D.: CBRestrictor: a Macaulay2 script for computing ranks of vector bundles of conformal blocks on moduli of higher genus curves (2015). https://github.com/dkrashen/conformal-blocks-rational-locus-restrictor
  40. 40.
    Laszlo, Y., Sorger, C.: The line bundles on the moduli of parabolic \(G\)-bundles over curves and their sections. Ann. Sci. École Norm. Sup. (4) 30(4), 499–525 (1997)MathSciNetzbMATHGoogle Scholar
  41. 41.
    Manon, C.: The Algebra of Conformal Blocks (2009). arXiv:0910.0577
  42. 42.
    Marian, A., Oprea, D., Pandharipande, R.: The first Chern class of the Verlinde bundles. In: String-Math 2012: Proceedings of Symposia Pure Mathematics vol. 90, pp. 87–111. American Mathematical Society, Providence (2015)Google Scholar
  43. 43.
    Mumford, D.: Towards an enumerative geometry of the moduli space of curves, Arithmetic and geometry, vol. II, Progress in Mathematics, vol. 36, pp. 271–328. Birkhäuser, Boston (1983)Google Scholar
  44. 44.
    Nagata, M.: On rational surfaces. I. Irreducible curves of arithmetic genus \(0\) or \(1\). Mem. Coll. Sci. Univ. Kyoto Ser. A Math. 32, 351–370 (1960)MathSciNetzbMATHGoogle Scholar
  45. 45.
    Nagel, U.: Minimal free resolutions of projective subschemes of small degree. In: Syzygies and Hilbert functions, Lecture Notes Pure Applied Mathematics, vol. 254, pp. 209–232. Chapman & Hall/CRC, Boca Raton (2007)Google Scholar
  46. 46.
    Narasimhan, M.S., Ramadas, T.R.: Factorisation of generalised theta functions. I. Invent. Math. 114(3), 565–623 (1993)MathSciNetzbMATHCrossRefGoogle Scholar
  47. 47.
    Narasimhan, M.S., Ramanan, S.: Moduli of vector bundles on a compact Riemann surface. Ann. Math. (2) 89, 14–51 (1969)MathSciNetzbMATHCrossRefGoogle Scholar
  48. 48.
    Narasimhan, M.S., Ramanan, S.: \(2\theta \)-linear systems on abelian varieties. In: Vector Bundles on Algebraic Varieties (Bombay, 1984), pp. 415–427 (1987)Google Scholar
  49. 49.
    Nguyenn, Q.M.: Vector bundles, dualities and classical geometry on a curve of genus two. Int. J. Math. 18(5), 535–558 (2007)MathSciNetCrossRefGoogle Scholar
  50. 50.
    Ortega, A.: On the moduli space of rank 3 vector bundles on a genus 2 curve and the Coble cubic. J. Algebraic Geom. 14(2), 327–356 (2005)MathSciNetzbMATHCrossRefGoogle Scholar
  51. 51.
    Pauly, C.: Espaces de modules de fibrés paraboliques et blocs conformes. Duke Math. J. 84(1), 217–235 (1996). (French) MathSciNetCrossRefGoogle Scholar
  52. 52.
    Ramadas, T.R.: Factorisation of generalised theta functions. II. The Verlinde formula. Topology 35(3), 641–654 (1996)MathSciNetzbMATHCrossRefGoogle Scholar
  53. 53.
    Schenck, H., Stillman, M.: SchurRings: a Macaulay2 package make computations in the representation ring of GL(n) possible (2007), Version 0.2. http://www.math.uiuc.edu/Macaulay2/
  54. 54.
    Sorger, C., La formule de Verlinde, Astérisque (1996), no. 237, Exp. No. 794, 3, vol. 1994/1995, pp. 87–114. Séminaire BourbakiGoogle Scholar
  55. 55.
    Sun, X.: Degeneration of moduli spaces and generalized theta functions. J. Algebraic Geom. 9(3), 459–527 (2000)MathSciNetzbMATHGoogle Scholar
  56. 56.
    Sun, X.: Factorization of generalized theta functions in the reducible case. Ark. Mat. 41(1), 165–202 (2003)MathSciNetCrossRefGoogle Scholar
  57. 57.
    Swinarski, D.: \(\mathfrak{sl}_{2}\) conformal block divisors and the nef cone of \(\overline{\cal M}_{0,n}\) (2009). arXiv:1107.5331
  58. 58.
    Swinarski, D.: ConformalBlocks: a Macaulay2 package for computing conformal block divisors (2010), Version 1.1. http://www.math.uiuc.edu/Macaulay2/
  59. 59.
    Teleman, C.: Borel–Weil–Bott theory on the moduli stack of \(G\)-bundles over a curve. Invent. Math. 134(1), 1–57 (1998)MathSciNetzbMATHCrossRefGoogle Scholar
  60. 60.
    Teleman, C.: The quantization conjecture revisited. Ann. Math. (2) 152(1), 1–43 (2000)MathSciNetzbMATHCrossRefGoogle Scholar
  61. 61.
    Thaddeus, M.: Stable pairs, linear systems and the Verlinde formula. Invent. Math. 117(2), 317–353 (1994)MathSciNetzbMATHCrossRefGoogle Scholar
  62. 62.
    Tsuchiya, A., Ueno, K., Yamada, Y.: Conformal Field Theory on Universal Family of Stable Curves with Gauge Symmetries. Integrable Systems in Quantum Field Theory and Statistical Mechanics. Advanced Studies in Pure Mathematics, vol. 19, pp. 459–566. Academic Press, Boston (1989)Google Scholar
  63. 63.
    Witten, E.: On quantum gauge theories in two dimensions. Commun. Math. Phys. 141(1), 153–209 (1991)MathSciNetzbMATHCrossRefGoogle Scholar
  64. 64.
    Witten, E.: The Verlinde algebra and the cohomology of the Grassmannian, Geometry, topology, & physics, pp. 357–422 (1995)Google Scholar
  65. 65.
    Xambó, S.: On projective varieties of minimal degree. Collect. Math. 32(2), 149–163 (1981)MathSciNetzbMATHGoogle Scholar
  66. 66.
    Zagier, D.: On the cohomology of moduli spaces of rank two vector bundles over curves. In: The moduli space of curves (Texel Island, 1994) Progress Mathematical, vol. 129, pp. 533–563. Birkhäuser, Boston (1995)Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2016

Authors and Affiliations

  1. 1.Department of MathematicsUniversity of North CarolinaChapel HillUSA
  2. 2.Department of MathematicsUniversity of GeorgiaAthensUSA

Personalised recommendations