Skip to main content
Log in

On a secant Dirichlet series and Eichler integrals of Eisenstein series

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We consider the secant Dirichlet series \(\psi _s (\tau ) = \sum _{n = 1}^{\infty } \frac{\sec (\pi n \tau )}{n^s}\), recently introduced and studied by Lalín, Rodrigue and Rogers. In particular, we show, as conjectured and partially proven by Lalín, Rodrigue and Rogers, that the values \(\psi _{2 m} (\sqrt{r})\), with \(r > 0\) rational, are rational multiples of \(\pi ^{2 m}\). We then put the properties of the secant Dirichlet series into context by showing that, for even s, they are Eichler integrals of odd weight Eisenstein series of level 4. This leads us to consider Eichler integrals of general Eisenstein series and to determine their period polynomials. In the level 1 case, these polynomials were recently shown by Murty, Smyth and Wang to have most of their roots on the unit circle. We provide evidence that this phenomenon extends to the higher level case. This observation complements recent results by Conrey, Farmer and Imamoglu as well as El-Guindy and Raji on zeros of period polynomials of Hecke eigenforms in the level 1 case. Finally, we briefly revisit results of a similar type in the works of Ramanujan.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Apostol, T.: Introduction to Analytic Number Theory. Springer, New York (1976)

    MATH  Google Scholar 

  2. Ayoub, R.: Euler and the zeta function. Amer. Math. Monthly 81, 1067–1086 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  3. Berndt, B.C.: Character transformation formulae similar to those for the Dedekind eta-function. In: Diamond, H. (ed.) Proceedings of Symposia in Pure Mathematics, vol. 24, pp. 9–30. American Mathematical Society, Providence (1973)

    Google Scholar 

  4. Berndt, B.C.: Character analogues of the Poisson and Euler–MacLaurin summation formulas with applications. J. Number Theory 7(4), 413–445 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  5. Berndt, B.C.: On Eisenstein series with characters and the values of Dirichlet \(L\)-functions. Acta Arith. 28(3), 299–320 (1975)

    MathSciNet  MATH  Google Scholar 

  6. Berndt, B.C.: Dedekind sums and a paper of G. H. Hardy. J. Lond. Math. Soc. 13(2), 129–137 (1976)

    Article  MathSciNet  MATH  Google Scholar 

  7. Berndt, B.C.: Modular transformations and generalizations of several formulae of Ramanujan. Rocky Mt. J. Math. 7(1), 147–190 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  8. Berndt, B.C.: Ramanujan’s Notebooks. Part II. Springer, New York (1989)

    MATH  Google Scholar 

  9. Bol, G.: Invarianten linearer Differentialgleichungen. Abh. Math. Semin. Univ. Hambg. 16, 1–28 (1949)

    Article  MathSciNet  MATH  Google Scholar 

  10. Conrey, J.B., Farmer, D.W., Imamoglu, Ö.: The nontrivial zeros of period polynomials of modular forms lie on the unit circle. Int. Math. Res. Not. 2013(20), 4758–4771 (2013)

    MathSciNet  MATH  Google Scholar 

  11. Charollois, P., Greenberg, M.: Rationality of secant zeta values. Ann. Sci. Math. Quebec 38(1), 1–6 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  12. Chowla, S.: Some infinite series, definite integrals and asymptotic expansions. J. Indian Math. Soc. 17, 261–288 (1927/28)

  13. Cohn, A.: Über die Anzahl der Wurzeln einer algebraischen Gleichung in einem Kreise. Math. Z. 14(1), 110–148 (1922)

    Article  MathSciNet  MATH  Google Scholar 

  14. El-Guindy, A., Raji, W.: Unimodularity of roots of period polynomials of Hecke eigenforms. Bull. Lond. Math. Soc. 46(3), 528–536 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  15. Gun, S., Murty, M.R., Rath, P.: Transcendental values of certain Eichler integrals. Bull. Lond. Math. Soc. 43(5), 939–952 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  16. Grosswald, E.: Die Werte der Riemannschen Zetafunktion an ungeraden Argumentstellen. Nachr. Akad. Wiss. Göttingen Math.-Phys. Kl. II 9–13, 1970 (1970)

    MathSciNet  MATH  Google Scholar 

  17. Katayama, K.: Ramanujan’s formulas for \(L\)-functions. J. Math. Soc. Jpn 26(2), 234–240 (1974)

    Article  MathSciNet  MATH  Google Scholar 

  18. Lagrange, J.L.: Solution d’un problème d’arithmétique. In: Serret, J.-A. (ed.) Oeuvres de Lagrange, vol. 1, pp. 671–731. Gauthier-Villars, Paris (1867–1892)

  19. Lenstra Jr., H.W.: Solving the Pell equation. Not. Amer. Math. Soc. 49(2), 182–192 (2002)

    MathSciNet  MATH  Google Scholar 

  20. Lalín, M.N., Rogers, M.D.: Variations of the Ramanujan polynomials and remarks on \(\zeta (2j+1)/\pi ^{2j+1}\). Funct. Approx. Comment. Math. 48(1), 91–111 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  21. Lalín, M.N., Rodrigue, F., Rogers, M.D.: Secant zeta functions. J. Math. Anal. Appl. 409(1), 197–204 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  22. Lalín, M.N., Smyth, C.J.: Unimodularity of zeros of self-inversive polynomials. Acta Math. Hung. 138(1–2), 85–101 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  23. Miyake, T.: Modular Forms. Springer, Berlin (1989). Translated from the Japanese by Yoshitaka Maeda

    Book  MATH  Google Scholar 

  24. Murty, M.R., Smyth, C.J., Wang, R.J.: Zeros of Ramanujan polynomials. J. Ramanujan Math. Soc. 26(1), 107–125 (2011)

    MathSciNet  MATH  Google Scholar 

  25. Paşol, V., Popa, A.A.: Modular forms and period polynomials. Proc. Lond. Math. Soc. 107(4), 713–743 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  26. Razar, M.J.: Values of Dirichlet series at integers in the critical strip. In: Serre, J.-P., Zagier, D.B. (eds.) Modular Functions of One Variable VI. Number 627 in Lecture Notes in Mathematics, pp. 1–10. Springer, Berlin (1977)

  27. Rivoal, T.: On the convergence of Diophantine Dirichlet series. Proc. Edinb. Math. Soc. 55(02), 513–541 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  28. Weil, A.: Remarks on Hecke’s lemma and its use. In: Iyanaga, S. (ed.) Algebraic Number Theory: Papers Contributed for the Kyoto International Symposium, 1976, pp. 267–274. Japan Society for the Promotion of Science (1977)

  29. Yoshida, M.: Hypergeometric functions, my love: modular interpretations of configuration spaces. Aspects of Mathematics, E32. Friedr. Vieweg & Sohn, Braunschweig (1997)

  30. Zagier, D.: Periods of modular forms and Jacobi theta functions. Invent. Math. 104(1), 449–465 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  31. Zucker, I.J., Robertson, M.M.: Some properties of Dirichlet \(L\)-series. J. Phys. A Math. Gen. 9(8), 1207–1214 (1976)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

We thank Matilde Lalín, Francis Rodrigue and Mathew Rogers for sharing the preprint [21], which motivated the present work. We are very grateful to Alexandru Popa for making us aware of the recent paper [25] and for very helpful discussions, as well as to Bernd Kellner for comments on an earlier version of this paper. Finally, the second author would like to thank the Max-Planck-Institute for Mathematics in Bonn, where part of this work was completed, for providing wonderful working conditions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Armin Straub.

Additional information

The first author’s research was partially supported by NSA Grant H98230-11-1-0200.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Berndt, B.C., Straub, A. On a secant Dirichlet series and Eichler integrals of Eisenstein series. Math. Z. 284, 827–852 (2016). https://doi.org/10.1007/s00209-016-1675-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-016-1675-0

Keywords

Mathematics Subject Classification

Navigation