Skip to main content
Log in

Embedded minimal surfaces in \({\mathbb {R}}^n\)

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

In this paper, we prove that every conformal minimal immersion of an open Riemann surface into \({\mathbb {R}}^n\) for \(n\ge 5\) can be approximated uniformly on compacts by conformal minimal embeddings (see Theorem 1.1). Furthermore, we show that every open Riemann surface carries a proper conformal minimal embedding into \({\mathbb {R}}^5\) (see Theorem 1.2). One of our main tools is a Mergelyan approximation theorem for conformal minimal immersions to \({\mathbb {R}}^n\) for any \(n\ge 3\) which is also proved in the paper (see Theorem 5.3).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Abraham, R.: Transversality in manifolds of mappings. Bull. Am. Math. Soc. 69, 470–474 (1963)

    Article  MathSciNet  MATH  Google Scholar 

  2. Alarcón, A., Fernández, I., López, F.J.: Harmonic mappings and conformal minimal immersions of Riemann surfaces into \({\mathbb{R}}^N\). Calc. Var. Partial Differ. Equ. 47, 227–242 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  3. Alarcón, A., Forstnerič, F.: Null curves and directed immersions of open Riemann surfaces. Invent. Math. 196, 733–771 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  4. Alarcón, A., Forstnerič, F.: Every conformal minimal surface in \({\mathbb{R}}^3\) is isotopic to the real part of a holomorphic null curve. J. Reine Angew. Math. (in press). arxiv:1408.5315

  5. Alarcón, A., López, F.J.: Minimal surfaces in \({\mathbb{R}}^3\) properly projecting into \({\mathbb{R}}^2\). J. Differ. Geom. 90, 351–382 (2012)

    MathSciNet  MATH  Google Scholar 

  6. Alarcón, A., López, F.J.: Properness of associated minimal surfaces. Trans. Am. Math. Soc. 366, 5139–5154 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  7. Alarcón, A., López, F.J.: Proper holomorphic embeddings of Riemann surfaces with arbitrary topology into \({\mathbb{C}}^2\). J. Geom. Anal. 23, 1794–1805 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  8. Bell, S.R., Narasimhan, R.: Proper holomorphic mappings of complex spaces. Encyc. Math. Sci. 69, 1–38 (1990)

    MathSciNet  MATH  Google Scholar 

  9. Bishop, E.: Mappings of partially analytic spaces. Am. J. Math. 83, 209–242 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  10. Černe, M., Forstnerič, F.: Embedding some bordered Riemann surfaces in the affine plane. Math. Res. Lett. 9, 683–696 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  11. Drinovec Drnovšek, B., Forstnerič, F.: Holomorphic curves in complex spaces. Duke Math. J. 139, 203–254 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  12. Drinovec Drnovšek, B., Forstnerič, F.: Approximation of holomorphic mappings on strongly pseudoconvex domains. Forum Math. 20, 817–840 (2008)

    MathSciNet  MATH  Google Scholar 

  13. Eliashberg, Y., Gromov, M.: Embeddings of Stein manifolds of dimension \(n\) into the affine space of dimension \(3n/2+1\). Ann. Math. (2) 136, 123–135 (1992)

    Article  MathSciNet  MATH  Google Scholar 

  14. Forstnerič, F.: Manifolds of holomorphic mappings from strongly pseudoconvex domains. Asian J. Math. 11, 113–126 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Forstnerič, F.: Stein Manifolds and Holomorphic Mappings (The Homotopy Principle in Complex Analysis). Ergebnisse der Mathematik und ihrer Grenzgebiete, 3. Folge, vol. 56. Springer, Berlin (2011)

  16. Forstnerič, F.: Oka manifolds: from Oka to Stein and back. With an appendix by Finnur Lárusson. Ann. Fac. Sci. Toulouse Math. (6) 22, 747–809 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  17. Forstnerič, F., Lárusson, F.: Survey of Oka theory. N. Y. J. Math. 17a, 1–28 (2011)

    MathSciNet  MATH  Google Scholar 

  18. Forstnerič, F., Wold, E.F.: Bordered Riemann surfaces in \({\mathbb{C}}^2\). J. Math. Pures Appl. 91, 100–114 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  19. Forstnerič, F., Wold, E.F.: Embeddings of infinitely connected planar domains into \({\mathbb{C}}^2\). Anal. PDE 6, 499–514 (2013)

    Article  MathSciNet  MATH  Google Scholar 

  20. Garsia, A.M.: An imbedding of closed Riemann surfaces in Euclidean space. Comment. Math. Helv. 35, 93–110 (1961)

    Article  MathSciNet  MATH  Google Scholar 

  21. Greene, R.E., Wu, H.: Embedding of open Riemannian manifolds by harmonic functions. Ann. Inst. Fourier (Grenoble) 25, 215–235 (1975)

    Article  MathSciNet  MATH  Google Scholar 

  22. Gromov, M.: Oka’s principle for holomorphic sections of elliptic bundles. J. Am. Math. Soc. 2, 851–897 (1989)

    MathSciNet  MATH  Google Scholar 

  23. Hörmander, L.: An Introduction to Complex Analysis in Several Variables, vol. 7, 3rd edn. North-Holland Mathematical Library, North Holland (1990)

  24. Lárusson, F.: What is\(\ldots \) an Oka manifold? Not. Am. Math. Soc. 57, 50–52 (2010)

    MathSciNet  MATH  Google Scholar 

  25. López, F.J., Ros, A.: On embedded complete minimal surfaces of genus zero. J. Differ. Geom. 33, 293–300 (1991)

    MathSciNet  MATH  Google Scholar 

  26. III Meeks, W.H., Pérez, J.: A Survey on Classical Minimal Surface Theory. University Lecture Series, 60. American Mathematical Society, Providence (2012)

  27. Meeks III, W.H., Pérez, J.: The classical theory of minimal surfaces. Bull. Am. Math. Soc. (N.S.) 48, 325–407 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  28. Narasimhan, R.: Imbedding of open Riemann surfaces. Nachr. Akad. Wiss. Göttingen Math. Phys. Kl. II 1960, 159–165 (1960)

    MathSciNet  MATH  Google Scholar 

  29. Narasimhan, R.: Imbedding of holomorphically complete complex spaces. Am. J. Math. 82, 917–934 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  30. Nash, J.: The imbedding problem for Riemannian manifolds. Ann. Math. (2) 63, 20–63 (1956)

    Article  MathSciNet  MATH  Google Scholar 

  31. Osserman, R.: A Survey of Minimal Surfaces, 2nd edn. Dover, New York (1986)

    MATH  Google Scholar 

  32. Remmert, R.: Sur les espaces analytiques holomorphiquement séparables et holomorphiquement convexes. C. R. Acad. Sci. Paris 243, 118–121 (1956)

    MathSciNet  MATH  Google Scholar 

  33. Rüedy, R.A.: Embeddings of open Riemann surfaces. Comment. Math. Helv. 46, 214–225 (1971)

    Article  MathSciNet  MATH  Google Scholar 

  34. Schürmann, J.: Embeddings of Stein spaces into affine spaces of minimal dimension. Math. Ann. 307, 381–399 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  35. Whitney, H.: Collected papers. Edited and with a preface by James Eells and Domingo Toledo. Contemporary Mathematicians. Birkhäuser Boston Inc, Boston (1992)

    MATH  Google Scholar 

Download references

Acknowledgments

A. Alarcón is supported by the Ramón y Cajal program of the Spanish Ministry of Economy and Competitiveness. A. Alarcón and F. J. López are partially supported by the MINECO/FEDER Grants MTM2011-22547 and MTM2014-52368-P, Spain. F. Forstnerič is partially supported by the research program P1-0291 and the Grant J1-5432 from ARRS, Republic of Slovenia. Part of this work was made when F. Forstnerič visited the institute IEMath-Granada with support by the GENIL-SSV 2014 program. We wish to thank an anonymous referee for the remarks which lead to improved presentation.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Franc Forstnerič.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Alarcón, A., Forstnerič, F. & López, F.J. Embedded minimal surfaces in \({\mathbb {R}}^n\) . Math. Z. 283, 1–24 (2016). https://doi.org/10.1007/s00209-015-1586-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-015-1586-5

Keywords

Mathematics Subject Classfication

Navigation