Mathematische Zeitschrift

, Volume 282, Issue 3–4, pp 1127–1136 | Cite as

Real structures on rational surfaces and automorphisms acting trivially on Picard groups



In this article, we prove that any complex smooth rational surface X which has no automorphism of positive entropy has a finite number of real forms (this is especially the case if X cannot be obtained by blowing up \(\mathbb P^2_{\mathbb C}\) at \(r\ge 10\) points). In particular, we prove that the group \(\mathrm {Aut\,}^{\#}X\) of complex automorphisms of X which act trivially on the Picard group of X is a linear algebraic group defined over \(\mathbb R\).


Rational surfaces Automorphism groups Real structures Real forms Galois cohomology 

Mathematics Subject Classification

14J26 14J50 14P05 12G05 


  1. 1.
    Bedford, E., Kim, K.: Continuous families of rational surface automorphisms with positive entropy. Math. Ann. 348(3), 667–688 (2010)MathSciNetCrossRefMATHGoogle Scholar
  2. 2.
    Borel, A., Serre, J.-P.: Théorèmes de finitude en cohomologie galoisienne. Comment. Math. Helv. 39, 111–164 (1964)MathSciNetCrossRefMATHGoogle Scholar
  3. 3.
    Cossec F., Dolgachev I.: Enriques surfaces. I, In: Progress in Mathematics, vol. 76, Birkhäuser Boston Inc., Boston, (1989)Google Scholar
  4. 4.
    Cantat, S., Dolgachev, I.: Rational surfaces with a large group of automorphisms. J. Am. Math. Soc. 25(3), 863–905 (2012)MathSciNetCrossRefMATHGoogle Scholar
  5. 5.
    Déserti J.: Automorphismes d’entropie positive, le cas des surfaces rationnelles, arXiv:1005.2259v2, (2010)
  6. 6.
    Degtyarev A., Itenberg I., Kharlamov V.: Real Enriques surfaces. Lecture Notes in Mathematics, vol. 1746. Springer, Berlin (2000)Google Scholar
  7. 7.
    Diller, J.: Cremona transformations, surface automorphisms, and plane cubics. Mich. Math. J. 60(2), 409–440 (2011)MathSciNetCrossRefMATHGoogle Scholar
  8. 8.
    Dolgachev I., Ortland D.: Point sets in projective spaces and theta functions . Société mathématique de France, Paris 165 (1988)Google Scholar
  9. 9.
    Dolgachev I.: Integral quadratic forms: applications to algebraic geometry (after V. Nikulin). In: Bourbaki seminar, vol. 1982/83, Astérisque, vol. 105, Socièèté Mathèmatique de France, Paris, pp. 251–278 (1983)Google Scholar
  10. 10.
    Dolgachev, I.: Reflection groups in algebraic geometry. Bull. Amer. Math. Soc. (N.S.) 45(1), 1–60 (2008)MathSciNetCrossRefMATHGoogle Scholar
  11. 11.
    Dolgachev, I.: Classical Algebraic Geometry. A Modern View. Cambridge University Press, Cambridge (2012)CrossRefMATHGoogle Scholar
  12. 12.
    Grunewald, F., Platonov, V.: Rigidity results for groups with radical cohomology of finite groups and arithmeticity problems. Duke Math. J. 100(2), 321–358 (1999)MathSciNetCrossRefMATHGoogle Scholar
  13. 13.
    Grivaux J.: Parabolic automorphisms of projective surfaces (after M. H. Gizatullin). arXiv:1307.1771v2 (2013)
  14. 14.
    Gromov, M.: On the entropy of holomorphic maps. Enseign. Math. (2) 49(3–4), 217–235 (2003)MathSciNetMATHGoogle Scholar
  15. 15.
    Hartshorne, R.: Algebraic Geometry, Graduate Texts in Maths, vol. 52. Springer, Heidelberg (1977)Google Scholar
  16. 16.
    Harbourne, B.: Rational surfaces with infinite automorphism group and no antipluricanonical curve. Proc. Am. Math. Soc. 99(3), 409–414 (1987)MathSciNetCrossRefMATHGoogle Scholar
  17. 17.
    Hacon, C.D., McKernan, J., Xu, C.: On the birational automorphisms of varieties of general type. Ann. of Math. (2) 177(3), 1077–1111 (2013)MathSciNetCrossRefMATHGoogle Scholar
  18. 18.
    Kambayashi, T.: On the absence of nontrivial separable forms of the affine plane. J. Algebra 35, 449–456 (1975)MathSciNetCrossRefMATHGoogle Scholar
  19. 19.
    Kharlamov, V.: Topology, moduli and automorphisms of real algebraic surfaces. Milan J. Math. 70, 25–37 (2002)MathSciNetCrossRefMATHGoogle Scholar
  20. 20.
    Kollár J.: Real algebraic surfaces. arXiv:alg-geom/9712003 (1997)
  21. 21.
    Matsumura, H.: On algebraic groups of birational transformations. Atti Accad. Naz. Lincei Rend. Cl. Sci. Fis. Mat. Nat. (8) 34, 151–155 (1963)MathSciNetMATHGoogle Scholar
  22. 22.
    McMullen, C.T.: Dynamics on blowups of the projective plane. Publ. Math. Inst. Ht. Ét. Sci. 105, 49–89 (2007)MathSciNetCrossRefMATHGoogle Scholar
  23. 23.
    Nagata M.: On rational surfaces. II, Mem. Coll. Sci. Univ. Kyoto Ser. A Math. 33, 271–293 (1960/1961)Google Scholar
  24. 24.
    Russo, F: The antibirational involutions of the plane and the classification of real del Pezzo surfaces. Algebraic geometry, pp. 289–312. de Gruyter, Berlin (2002)Google Scholar
  25. 25.
    Serre J.-P.: Galois cohomology, english ed., Springer Monographs in Mathematics, Translated from the French by Patrick Ion and revised by the author, Springer, Berlin (2002)Google Scholar
  26. 26.
    Silhol, R.: Real abelian varieties and the theory of Comessatti. Math. Z. 181(3), 345–364 (1982)MathSciNetCrossRefMATHGoogle Scholar
  27. 27.
    Silhol R.: Real algebraic surfaces. Lecture Notes in Math, vol. 1392. Springer, Berlin (1989)Google Scholar
  28. 28.
    Yomdin, Y.: Volume growth and entropy. Israel J. Math. 57(3), 285–300 (1987)MathSciNetCrossRefMATHGoogle Scholar
  29. 29.
    Zhang, D.-Q.: Automorphism groups and anti-pluricanonical curves. Math. Res. Lett. 15(1), 163–183 (2008)MathSciNetCrossRefMATHGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2015

Authors and Affiliations

  1. 1.LAREMA, UMR CNRS 6093Université d’AngersAngers Cedex 01France

Personalised recommendations