Skip to main content
Log in

Algebraic rational cells and equivariant intersection theory

Mathematische Zeitschrift Aims and scope Submit manuscript

Cite this article


We provide a notion of algebraic rational cell with applications to intersection theory on singular varieties with torus action. Based on this notion, we study \(\mathbb {Q}\)-filtrable varieties: algebraic varieties where a torus acts with isolated fixed points, such that the associated Białynicki-Birula decomposition consists of algebraic rational cells. We show that the rational equivariant Chow group of any \(\mathbb {Q}\)-filtrable variety is freely generated by the classes of the cell closures. We apply this result to group embeddings, and more generally to spherical varieties.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions


  1. Bialynicki-Birula, A.: Some theorems on actions of algebraic groups. Ann. Math. 98(3), 480–497 (1973). 2nd Ser

    Article  MathSciNet  MATH  Google Scholar 

  2. Bialynicki-Birula, A.: Some properties of the decompositions of algebraic varieties determined by actions of a torus. Bull. Acad. Pol. Sci. Sér. Sci. Math. Astron. Phys. 24(9), 667–674 (1976)

    MathSciNet  MATH  Google Scholar 

  3. Brion, M.: Equivariant Chow groups for torus actions. Transfrm. Groups 2(3), 225–267 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  4. Brion, M.: Equivariant cohomology and equivariant intersection theory. Notes by Alvaro Rittatore. NATO Adv. Sci. Inst. Ser. C Math. Phys. Sci., 514, Representation theories and algebraic geometry (Montreal, PQ, 1997), 1–37, Kluwer Acad. Publ, Dordrecht (1998)

  5. Brion, M.: Rational smoothness and fixed points of torus actions. Transform. Groups 4(2–3), 127–156 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  6. Brion, M.: Local structure of algebraic monoids. Mosc. Math. J. 8(4), 647–666 (2008)

    MathSciNet  MATH  Google Scholar 

  7. Deligne, P.: Cohomologie Étale. Séminaire de Géométrie Algébrique du Bois-Marie SGA 4 1/2. Lecture Notes in Mathematics, 569. Springer-Verlag (1977)

  8. Edidin, D., Graham, W.: Equivariant intersection theory. Invent. Math. 131, 595–634 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  9. Eisenbud, D.: Commutative algebra with a view toward algebraic geometry. Springer, Berlin (1995)

    MATH  Google Scholar 

  10. Esnault, H., Levine, M.: Surjectivity of cycle maps. Journées de Géométrie algébrique d’Orsay (1992). Astérisque 218, 203–226 (1993)

    MathSciNet  MATH  Google Scholar 

  11. Fulton, W.: Intersection theory. Springer, Berlin (1984)

    Book  MATH  Google Scholar 

  12. Gonzales, R.: Rational smoothness, cellular decompositions and GKM theory. Geom. Topol. 18(1), 291–326 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  13. Gonzales, R.: Equivariant cohomology of rationally smooth group embeddings. Transform. Groups 20(3), 743–769 (2015)

    Article  MathSciNet  MATH  Google Scholar 

  14. Gonzales, R.: Equivariant operational Chow rings of T-linear schemes. Doc. Math. 20, 401–432 (2015)

    MathSciNet  Google Scholar 

  15. Gonzales, R.: Poincaré duality in equivariant intersection theory. Pro Math. 28(56), 54–80 (2014)

    Google Scholar 

  16. Grothendieck, A.: Torsion homologique et sections rationnelles. Seminaire Claude Chevalley, 3 (1958), Expose. No. 5

  17. Jannsen, U.: Mixed motives and algebraic K-theory. Lecture Notes in Mathematics, vol. 1400. Springer-Verlag, New York (1990)

  18. Konarski, J.: Decompositions of normal algebraic varieties determined by an action of a one-dimensional torus. Bull. Acad. Pol. Sci. Sér. Sci. Math. Astron. Phys. 26(4), 295–300 (1978)

    MathSciNet  MATH  Google Scholar 

  19. Renner, L.: Classification of semisimple varieties. J. Algebra 122(2), 275–287 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  20. Renner, L.: Linear algebraic monoids. In: Encyclopaedia of Mathematical Sciences, vol. 134, pp. xii+246 (2005)

  21. Renner, L.: The \(H\)-polynomial of a semisimple monoid. J. Algebra 319, 360–376 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  22. Renner, L.: Rationally smooth algebraic monoids. Semigroup Forum 78, 384–395 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  23. Rittatore, A.: Algebraic monoids and group embeddings. Transform. Groups 3(4), 375–396 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  24. Rossmann, W.: Equivariant multiplicities on complex varieties. Astérisque 173–174, 313–330 (1989)

    MathSciNet  MATH  Google Scholar 

  25. Springer, T.: Linear Algebraic Groups, 2nd edn. Birkhäuser Classics, Boston, pp. xiv+334 (1998)

  26. Sumihiro, H.: Equivariant completion. J. Math. Kyoto Univ. 14, 1–28 (1974)

    MathSciNet  MATH  Google Scholar 

  27. Timashev, D.: Homogeneous spaces and equivariant embeddings. In: Encyclopaedia of Mathematical Sciences, vol. 138, pp. xxii+253 (2011)

  28. Totaro, B.: Chow groups, Chow cohomology and linear varieties. Forum Math. Sigma 2, e17 (2014)

    Article  MathSciNet  MATH  Google Scholar 

  29. Voisin, C.: Chow rings, decomposition of the diagonal, and the topology of families. Princeton University Press, Princeton (2014)

    Book  MATH  Google Scholar 

Download references


The research in this paper was done during my visits to the Institute des Hautes Études Scientifiques (IHES) and the Max-Planck-Institut für Mathematik (MPIM). I am deeply grateful to both institutions for their support, outstanding hospitality, and excellent working conditions. A very special thank you goes to Michel Brion for the productive meeting we had at IHES, from which this paper received much inspiration. I would also like to thank the support that I received, as a postdoctoral fellow, from Sabancı Üniversitesi, the Scientific and Technological Research Council of Turkey (TÜBİTAK), and the German Research Foundation (DFG). I am further grateful to the referees for very helpful comments and suggestions that improved the clarity of the article.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Richard P. Gonzales.

Additional information

Supported by the Institut des Hautes Études Scientifiques, the Max-Planck-Institut für Mathematik, TÜBİTAK Project No. 112T233, and DFG Research Grant PE2165/1-1.

Rights and permissions

Reprints and Permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Gonzales, R.P. Algebraic rational cells and equivariant intersection theory. Math. Z. 282, 79–97 (2016).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:


Mathematics Subject Classification