Skip to main content
Log in

Embedding Bergman spaces into tent spaces

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

Let \(A^p_\omega \) denote the Bergman space in the unit disc \(\mathbb {D}\) of the complex plane induced by a radial weight \(\omega \) with the doubling property \(\int _{r}^1\omega (s)\,ds\le C\int _{\frac{1+r}{2}}^1\omega (s)\,ds\). The tent space \(T^q_s(\nu ,\omega )\) consists of functions such that

$$\begin{aligned} \begin{aligned} \Vert f\Vert _{T^q_s(\nu ,\omega )}^q =\int _\mathbb {D}\left( \int _{\varGamma (\zeta )}|f(z)|^s\,d\nu (z)\right) ^\frac{q}{s}\omega (\zeta )\,dA(\zeta ) <\infty ,\quad 0<q, \; s<\infty . \end{aligned} \end{aligned}$$

Here \(\varGamma (\zeta )\) is a non-tangential approach region with vertex \(\zeta \) in the punctured unit disc \(\mathbb {D}{\setminus }\{0\}\). We characterize the positive Borel measures \(\nu \) such that \(A^p_\omega \) is embedded into the tent space \(T^q_s(\nu ,\omega )\), where \(1+\frac{s}{p}-\frac{s}{q}>0\), by considering a generalized area operator. The results are provided in terms of Carleson measures for \(A^p_\omega \).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Cascante, C., Ortega, J.: Imbedding potentials in tent spaces. J. Funct. Anal. 198(1), 106–141 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  2. Cohn, W.S.: Generalized area operators on Hardy spaces. J. Math. Anal. Appl. 216(1), 112–121 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  3. Cohn, W.S., Verbitsky, I.E.: Factorization of tent spaces and Hankel operators. J. Funct. Anal. 175(2), 308–329 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  4. Coifman, R.R., Meyer, Y., Stein, E.M.: Some new functions spaces and their applications to Harmonic analysis. J. Funct. Anal. 62(3), 304–335 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  5. Duren, P.: Theory of \(H^p\) Spaces. Academic Press, New York (2000)

    Google Scholar 

  6. Fefferman, C., Stein, E.M.: \(H^{p}\) spaces of several variables. Acta Math. 129(3–4), 137–193 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  7. Garnett, J.: Bounded Analytic Functions. Academic Press, New York (1981)

    MATH  Google Scholar 

  8. Gong, M., Lou, Z., Wu, Z.: Area operators from \(H^p\) spaces to \(L^q\) spaces. Sci. China Math. 53(2), 357–366 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  9. Luecking, D.H.: Embedding derivatives of Hardy spaces into Lebesgue spaces. Proc. Lond. Math. Soc. 63(3), 595–619 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  10. Luecking, D.H.: Embedding theorems for spaces of analytic functions via Khinchine’s inequality. Mich. Math. J. 40(2), 333–358 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  11. Oleinik, V.L., Pavlov, B.S.: Embedding theorems of weighted classes of harmonic and analytic function. J. Sov. Math. 2, 135–142 (1974). A translation of Zap. Nauch. Sem. LOMI Steklov 22 (1971)

  12. Peláez, J.A.: Compact embedding derivatives of Hardy spaces into Lebesgue spaces. Proc. Am. Math. Soc. http://dx.doi.org/10.1090/proc12763

  13. Peláez, J.A.: Small weighted Bergman spaces. In: Proceedings of the Summer School “Complex and Harmonic Analysis and Related Topics” Mekrijärvi, June (2014)

  14. Peláez, J.A., Rättyä, J.: Weighted Bergman spaces induced by rapidly increasing weights. Memoirs of the American Mathematical Society, vol 227, No 1066. American Mathematical Society (2014)

  15. Peláez, J.A., Rättyä, J.: Embedding theorems for Bergman spaces via harmonic analysis. Math. Ann. 362(1), 205–239 (2015)

    Article  MathSciNet  Google Scholar 

  16. Peláez, J. A., Rättyä, J.: On the boundedness of Bergman projection, to appear, VI CIDAMA 2014, http://arxiv.org/abs/1501.03957

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to José Ángel Peláez.

Additional information

This research was supported in part by the Ramón y Cajal program of MICINN (Spain); by Ministerio de Educación y Ciencia, Spain, projects MTM2011-25502, MTM2011-26538 and MTM2014-52865-P; by La Junta de Andalucía, (FQM210) and (P09-FQM-4468); by Academy of Finland Project No. 268009, by Väisälä Foundation of Finnish Academy of Science and Letters, and by Faculty of Science and Forestry of University of Eastern Finland Project No. 930349.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Peláez, J.Á., Rättyä, J. & Sierra, K. Embedding Bergman spaces into tent spaces. Math. Z. 281, 1215–1237 (2015). https://doi.org/10.1007/s00209-015-1528-2

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-015-1528-2

Keywords

Mathematics Subject Classification

Navigation