Abstract
Let \(A^p_\omega \) denote the Bergman space in the unit disc \(\mathbb {D}\) of the complex plane induced by a radial weight \(\omega \) with the doubling property \(\int _{r}^1\omega (s)\,ds\le C\int _{\frac{1+r}{2}}^1\omega (s)\,ds\). The tent space \(T^q_s(\nu ,\omega )\) consists of functions such that
Here \(\varGamma (\zeta )\) is a non-tangential approach region with vertex \(\zeta \) in the punctured unit disc \(\mathbb {D}{\setminus }\{0\}\). We characterize the positive Borel measures \(\nu \) such that \(A^p_\omega \) is embedded into the tent space \(T^q_s(\nu ,\omega )\), where \(1+\frac{s}{p}-\frac{s}{q}>0\), by considering a generalized area operator. The results are provided in terms of Carleson measures for \(A^p_\omega \).
Similar content being viewed by others
References
Cascante, C., Ortega, J.: Imbedding potentials in tent spaces. J. Funct. Anal. 198(1), 106–141 (2003)
Cohn, W.S.: Generalized area operators on Hardy spaces. J. Math. Anal. Appl. 216(1), 112–121 (1997)
Cohn, W.S., Verbitsky, I.E.: Factorization of tent spaces and Hankel operators. J. Funct. Anal. 175(2), 308–329 (2000)
Coifman, R.R., Meyer, Y., Stein, E.M.: Some new functions spaces and their applications to Harmonic analysis. J. Funct. Anal. 62(3), 304–335 (1985)
Duren, P.: Theory of \(H^p\) Spaces. Academic Press, New York (2000)
Fefferman, C., Stein, E.M.: \(H^{p}\) spaces of several variables. Acta Math. 129(3–4), 137–193 (1972)
Garnett, J.: Bounded Analytic Functions. Academic Press, New York (1981)
Gong, M., Lou, Z., Wu, Z.: Area operators from \(H^p\) spaces to \(L^q\) spaces. Sci. China Math. 53(2), 357–366 (2010)
Luecking, D.H.: Embedding derivatives of Hardy spaces into Lebesgue spaces. Proc. Lond. Math. Soc. 63(3), 595–619 (1991)
Luecking, D.H.: Embedding theorems for spaces of analytic functions via Khinchine’s inequality. Mich. Math. J. 40(2), 333–358 (1993)
Oleinik, V.L., Pavlov, B.S.: Embedding theorems of weighted classes of harmonic and analytic function. J. Sov. Math. 2, 135–142 (1974). A translation of Zap. Nauch. Sem. LOMI Steklov 22 (1971)
Peláez, J.A.: Compact embedding derivatives of Hardy spaces into Lebesgue spaces. Proc. Am. Math. Soc. http://dx.doi.org/10.1090/proc12763
Peláez, J.A.: Small weighted Bergman spaces. In: Proceedings of the Summer School “Complex and Harmonic Analysis and Related Topics” Mekrijärvi, June (2014)
Peláez, J.A., Rättyä, J.: Weighted Bergman spaces induced by rapidly increasing weights. Memoirs of the American Mathematical Society, vol 227, No 1066. American Mathematical Society (2014)
Peláez, J.A., Rättyä, J.: Embedding theorems for Bergman spaces via harmonic analysis. Math. Ann. 362(1), 205–239 (2015)
Peláez, J. A., Rättyä, J.: On the boundedness of Bergman projection, to appear, VI CIDAMA 2014, http://arxiv.org/abs/1501.03957
Author information
Authors and Affiliations
Corresponding author
Additional information
This research was supported in part by the Ramón y Cajal program of MICINN (Spain); by Ministerio de Educación y Ciencia, Spain, projects MTM2011-25502, MTM2011-26538 and MTM2014-52865-P; by La Junta de Andalucía, (FQM210) and (P09-FQM-4468); by Academy of Finland Project No. 268009, by Väisälä Foundation of Finnish Academy of Science and Letters, and by Faculty of Science and Forestry of University of Eastern Finland Project No. 930349.
Rights and permissions
About this article
Cite this article
Peláez, J.Á., Rättyä, J. & Sierra, K. Embedding Bergman spaces into tent spaces. Math. Z. 281, 1215–1237 (2015). https://doi.org/10.1007/s00209-015-1528-2
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00209-015-1528-2