Skip to main content
Log in

Symmetries of the rolling model

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

In the present paper, we study the infinitesimal symmetries of the model of two Riemannian manifolds (Mg) and \(({\hat{M}},\hat{g})\) rolling without twisting or slipping. We show that, under certain genericity hypotheses, the natural bundle projection from the state space Q of the rolling model onto M is a principal bundle if and only if \({\hat{M}}\) has constant sectional curvature. Additionally, we prove that when M and \({\hat{M}}\) have different constant sectional curvatures and dimension \(n\ge 3\), the rolling distribution is never flat, contrary to the two dimensional situation of rolling two spheres of radii in the proportion \(1{:}3\), which is a well-known system satisfying É. Cartan’s flatness condition.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alouges, F., Chitour, Y., Long, R.: A motion planning algorithm for the rolling-body problem. IEEE Trans. Robot. 26(5), 827–836 (2010)

    Article  Google Scholar 

  2. Agrachev, A., Sachkov, Y.: An intrinsic approach to the control of rolling bodies. In: Proceedings of the Conference on Decision and Control, Phoenix, vol.1, pp. 431–435 (1999)

  3. Agrachev, A., Sachkov, Y.: Control Theory from the Geometric Viewpoint. Encyclopaedia of Mathematical Sciences, 87. Control Theory and Optimization, II. Springer, Berlin (2004)

    Book  Google Scholar 

  4. Agrachev, A.: Rolling balls and octonions. Proc. Steklov Inst. Math. 258, 13–22 (2007)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bellaïche, A., Risler, J.J.: Sub-Riemannian geometry, Progress in Mathematics, 144. Birkhäuser, Basel (1996)

    Book  Google Scholar 

  6. Bor, G., Montgomery, R.: \(G_2\) and the “Rolling Distribution”. L’Ens. Math. (2) 55, 157–196 (2009)

    MATH  MathSciNet  Google Scholar 

  7. Boyer, C.P., Galicki, K.: 3-Sasakian manifolds. Surveys in differential geometry: essays on Einstein manifolds, pp. 123–184, Surv. Differ. Geom., VI, Int. Press, Boston, MA (1999)

  8. Bryant, R., Hsu, L.: Rigidity of integral curves of rank 2 distributions. Invent. Math. 114(2), 435–461 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  9. Cartan, É.: Les systèmes de Pfaff, à cinq variables et les équations aux dérivées partielles du second ordre. Ann. Sci. École Norm. Super. 27(3), 109–192 (1910)

    MATH  MathSciNet  Google Scholar 

  10. Chaplygin, S.A.: On some feasible generalization of the theorem of area, with an application to the problem of rolling spheres. Mat. Sb. XX, 1–32 (1897) (in Russian); Regul. Chaotic Dyn. 17, 199–217 (2012) (in English)

  11. Chaplygin, S.A.: On the rolling of a sphere on a horizontal plane. Mat. Sb. XXIV, pp. 139–168 (1903) (in Russian); Regul. Chaotic Dyn. 7, 131–148 (2002) (in English)

  12. Chelouah, A., Chitour, Y.: On the controllability and trajectories generation of rolling surfaces. Forum Math. 15, 727–758 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  13. Chitour, Y., Kokkonen, P.: Rolling Manifolds: Intrinsic Formulation and Controllability. arXiv:1011.2925 (2011)

  14. Chitour, Y., Kokkonen, P.: Rolling manifolds on space forms. Ann. Inst. H. Poincaré Anal. Non Linéaire 29(6), 927–954 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  15. Chitour, Y., Kokkonen, P.: Rolling of manifolds and controllability in dimension three. Accepted for publication in Mémoires de la Société Mathématique de France

  16. Chitour, Y., Godoy Molina, M., Kokkonen, P.: On the controllability of the rolling problem onto the hyperbolic \(n\)-space. SIAM J. Control Optim. 53(2), 948–968 (2015)

    Article  MathSciNet  Google Scholar 

  17. Chitour, Y., Godoy Molina, M., Kokkonen, P.: Rolling Cartan geometries (work in progress)

  18. Godoy Molina, M., Grong, E., Markina, I., Silva Leite, F.: An intrinsic formulation of the rolling manifolds problem. J. Dyn. Control Syst. 18(2), 181–214 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  19. Godoy Molina, M., Grong, E.: Geometric conditions for the existence of an intrinsic rolling. Commun. Pure Appl. Anal. 13(1), 435–452 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  20. Jurdjevic, V.: The geometry of the plate-ball problem. Arch. Ration. Mech. Anal. 124, 305–328 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  21. Jurdjevic, V., Zimmerman, J.: Rolling sphere problems on spaces of constant curvature. Math. Proc. Camb. Phil. Soc. 144, 729 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  22. Kobayashi, S., Nomizu, K.: Foundations of Differential Geometry, vol. I. Wiley Classics Library, Wiley, New York (1996)

    Google Scholar 

  23. Kokkonen, P.: Rolling of manifolds without spinning. J. Dyn. Control Syst. 19(1), 123–156 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  24. Marigo, A., Bicchi, A.: Rolling bodies with regular surface: controllability theory and applications. IEEE Trans. Autom. Control 45(9), 1586–1599 (2000)

    Article  MATH  MathSciNet  Google Scholar 

  25. Markina, I., Silva Leite, F.: An intrinsic formulation for rolling pseudo-Riemannian manifolds. arXiv:1210.3140

  26. Mortada, A., Kokkonen, P., Chitour, Y.: Rolling manifolds of different dimensions. Acta Appl. Math. 1–27 (2014). doi:10.1007/s10440-014-9972-2

  27. Murray, R., Li, Z., Sastry, S.: A Mathematical Introduction to Robotic Manipulation. CRC Press, Boca Raton (1994)

    MATH  Google Scholar 

  28. An, D., Nurowski, P.: Twistor space for rolling bodies. Commun. Math. Phys. 326(2), 393–414 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  29. Nomizu, K.: Kinematics and differential geometry of submanifolds. Tôhoku Math. J. 30, 623–637 (1978)

    Article  MATH  MathSciNet  Google Scholar 

  30. O’Neill, B.: Semi-Riemannian Geometry with Applications to Relativity. Pure and Applied Mathematics, vol. 103. Academic Press, New York (1983)

  31. Sakai, T.: Riemannian Geometry, Translations of Mathematical Monographs, 149. American Mathematical Society, Providence (1996)

    Google Scholar 

  32. Sachkov, Yuri L.: Symmetries of flat rank two distributions and sub-Riemannian structures. Trans. Am. Math. Soc. 356(2), 457–494 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  33. Sharpe, R.W.: Differential Geometry: Cartan’s Generalization of Klein’s Erlangen Program. Graduate Texts in Mathematics, 166. Springer, New York (1997)

    Google Scholar 

  34. Zelenko, I.: On variational approach to differential invariants of rank two distributions. Differ. Geom. Appl. 24(3), 235–259 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  35. Zelenko, I.: Fundamental form and the Cartan tensor of \((2,5)\)-distributions coincide. J. Dyn. Control Syst. 12(2), 247–276 (2006)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

We would like to thank the anonymous reviewer for the insightful comments communicated to us, and docent J. Tervo for reading a preliminary version of this paper and suggesting some important improvements.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mauricio Godoy Molina.

Additional information

This work is supported by a public grant overseen by the French National Research Agency (ANR) as part of the “Investissement d’Avenir” program, through the “iCODE Institute project” funded by the IDEX Paris-Saclay, ANR-11-IDEX-0003-0. The work of the second author is partially supported by the grants of the Norwegian Research Council NFR-FRINAT 213440/BG and NFR ISP 809290. The work of the third author is supported by Finnish Academy of Science and Letters, KAUTE Foundation and l’Institut français de Finlande.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Chitour, Y., Godoy Molina, M. & Kokkonen, P. Symmetries of the rolling model. Math. Z. 281, 783–805 (2015). https://doi.org/10.1007/s00209-015-1508-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-015-1508-6

Keywords

Mathematics Subject Classification

Navigation