Skip to main content
Log in

Generic properties of Padé approximants and Padé universal series

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We establish properties concerning the distribution of poles of Padé approximants, which are generic in Baire category sense. We also investigate Padé universal series, an analog of classical universal series, where Taylor partial sums are replaced with Padé approximants. In particular, we complement previous studies on this subject by exhibiting dense or closed infinite dimensional linear subspaces of analytic functions in a simply connected domain of the complex plane, containing the origin, whose all non zero elements are made of Padé universal series. We also show how Padé universal series can be built from classical universal series with large Ostrowski-gaps.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1

Similar content being viewed by others

References

  1. Aron, R., García, D., Maestre, M.: Linearity in non-linear problems. Rev. R. Acad. Cien. Ser. A Mat. 95, 7–12 (2001)

    MATH  Google Scholar 

  2. Aron, R., Gurariy, V.I., Seoane-Sepúlveda, J.B.: Lineability and spaceability of sets of functions on \(\mathbb{R}\). Proc. Am. Math. Soc. 133, 795–803 (2005)

    Article  MATH  Google Scholar 

  3. Baker Jr., G.A., Graves-Morris, P.R.: Padé Approximants I and II. Cambridge Univ Press, Cambridge (1996)

  4. Baratchart, L.: Existence and generic properties for \(L^{2}\) approximants of linear systems. IMA J. Math. Control Inf. 3, 89–101 (1986)

    Article  MATH  Google Scholar 

  5. Bayart, F.: Topological and algebraic genericity of divergence and universality. Stud. Math. 167, 161–181 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  6. Bayart, F.: Linearity of sets of strange functions. Mich. Math. J. 53, 291–303 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  7. Bayart, F., Grosse-Erdmann, K.-G., Nestoridis, V., Papadimitropoulos, C.: Abstract theory of universal series and applications. Proc. Lond. Math. Soc. 96, 417–463 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  8. Bernal-González, L., Ordóñez, M.: Cabrera, Lineability criteria, with applications. J. Funct. Anal. 266, 3997–4025 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  9. Bernal-González, L., Pellegrino, D., Seoane-Sepúlveda, J.B.: Linear subsets of non-linear sets in topological vector spaces. Bull. Am. Math. Soc. 51(1), 71–130 (2014)

    Article  MATH  Google Scholar 

  10. Borwein, P.B.: The usual behaviour of rational approximants. Can. Math. Bull. 26, 317–323 (1983)

    Article  MATH  Google Scholar 

  11. Borwein, P.B., Zhou, S.P.: The usual behavior of rational approximation II. J. Approx. Theory 72, 278–289 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  12. Buslaev, V.I., Gonchar, A.A., Suetin, S.P.: On convergence of subsequences of the \(m\)-th row of a Padé table. Math. USSR-Sb. 48, 535–540 (1984)

    Article  MATH  Google Scholar 

  13. Charpentier, S.: On the closed subspaces of universal series in Banach and Fréchet spaces. Stud. Math. 198, 121–145 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  14. Charpentier, S., Mouze, A.: Universal Taylor series and summability. Rev. Math. Complut. 28, 153–167 (2015)

    Article  MATH  MathSciNet  Google Scholar 

  15. Daras, N., Fournodavlos, G., Nestoridis, V.: Universal Padé approximants on simply connected domains. arXiv:1501.02381

  16. Fournodavlos, G., Nestoridis, V.: Generic approximation of functions by their Padé approximants. J. Math. Anal. Appl. 408, 744–750 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  17. Gehlen, W., Luh, W., Müller, J.: On the existence of O-universal functions. Complex Var. Theory Appl. 41, 81–90 (2000)

    Article  MATH  Google Scholar 

  18. Gonchar, A.A.: Uniform convergence of diagonal Padé approximants. Math. USSR-Sb. 46, 539–559 (1983)

    Article  MATH  Google Scholar 

  19. Gragg, W.B.: The Padé table and its relation to certain algorithms of numerical analysis. SIAM Rev. 14, 1–61 (1972)

    Article  MATH  MathSciNet  Google Scholar 

  20. Grosse-Erdmann, K.-G., Peris, A.: Linear Chaos. Springer, New York (2011)

    Book  MATH  Google Scholar 

  21. Herzog, G.: On universal functions and interpolation. Analysis 11, 21–26 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  22. Herzog, G.: Lagrange interpolation for the disk algebra: the worst case. J. Approx. Theory 115, 354–358 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  23. Lubinsky, D.S.: Padé tables of a class of entire functions. Proc. Am. Math. Soc. 94, 399–405 (1985)

    MATH  MathSciNet  Google Scholar 

  24. Luh, W.: Universal approximation properties of overconvergent power series on open sets. Analysis 6, 191–207 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  25. Menet, Q.: Sous-espaces fermés de séries universelles sur un espace de Fréchet. Stud. Math. 207, 181–195 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  26. Menet, Q.: Hypercyclic subspaces and weighted shifts. Adv. Math. 255, 305–337 (2014)

    Article  MATH  MathSciNet  Google Scholar 

  27. Montes-Rodríguez, A.: Banach spaces of hypercyclic vectors. Mich. Math. J. 43, 419–436 (1996)

    Article  MATH  Google Scholar 

  28. Müller, J.: From Polynomial Approximation to Universal Taylor Series and Back Again, Oberwolfach Report 6/2008, pp. 305–307. Complex Approximation and Universality, Mini-Workshop (2008)

  29. Nestoridis, V.: Universal Taylor series. Ann. Inst. Fourier 46, 1293–1306 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  30. V. Nestoridis, An extension of the notion of universal Taylor series, computational methods and function theory 1997 (Nicosia). Ser. Approx. Decompos., World Sci. Publ., River Edge, NJ, 11, 421–430 (1999)

  31. Nestoridis, V.: Universal Padé approximants with respect to the chordal metric. Izv. Nats. Akad. Nauk. Armenii Mat. 47, 13–34 (2012); translation in. J. Contemp. Math. Anal. 47(4), 168–181 (2012)

  32. Nikishin, E.M., Sorokin, V.N.: Rational approximations and orthogonality. In: Translations of Math. Monographs, vol. 92. American Mathematical Society, Providence, RI (1991)

  33. Petersson, H.: Hypercyclic subspaces for Fréchet space operators. J. Math. Anal. Appl. 319, 764–782 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  34. Perron, O.: Die Lehre von den Kettenbrüchen, vol. 2, 3rd edn. Teubner, Stuttgart (1957)

    MATH  Google Scholar 

  35. Wallin, H.: The convergence of Padé approximants and the size of the power series coefficients. Appl. Anal. 4, 235–251 (1974)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors gratefully acknowledge the referee for his careful reading of the manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to S. Charpentier.

Rights and permissions

Reprints and permissions

About this article

Check for updates. Verify currency and authenticity via CrossMark

Cite this article

Charpentier, S., Nestoridis, V. & Wielonsky, F. Generic properties of Padé approximants and Padé universal series. Math. Z. 281, 427–455 (2015). https://doi.org/10.1007/s00209-015-1493-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-015-1493-9

Keywords

Mathematics Subject Classification

Navigation