Advertisement

Mathematische Zeitschrift

, Volume 279, Issue 3–4, pp 753–766 | Cite as

Mixed Hessian inequalities and uniqueness in the class \(\mathcal {E}(X,\omega ,m)\)

  • Sławomir Dinew
  • Chinh H. LuEmail author
Article

Abstract

We prove a general inequality for mixed Hessian measures by global arguments. Our method also yields a simplification for the case of complex Monge–Ampère equation. Exploiting this and using Kołodziej’s mass concentration technique we also prove the uniqueness of the solutions to the complex Hessian equation on compact Kähler manifolds in the case of probability measures vanishing on \(m\)-polar sets.

Keywords

Subharmonic Function Plurisubharmonic Function Positive Radon Measure Hessian Equation Pluripotential Theory 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Alekser, S., Verbitsky, M.: Quaternionic Monge-Ampère equations and Calabi problem for HKT-manifolds. Israel J. Math. 176, 109–138 (2010)CrossRefMathSciNetGoogle Scholar
  2. 2.
    Bedford, E., Taylor, B.A.: The Dirichlet problem for a complex Monge-Ampère equation. Invent. Math. 37(1), 1–44 (1976)CrossRefzbMATHMathSciNetGoogle Scholar
  3. 3.
    Berman, R.J.: From Monge-Ampere equations to envelopes and geodesic rays in the zero temperature limit. arXiv:1307.3008
  4. 4.
    Berman, R.J., Boucksom, S., Guedj, V., Zeriahi, A.: A variational approach to complex Monge-Ampère equations. Publ. Math. Inst. Hautes Études Sci. 117, 179–245 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  5. 5.
    Błocki, Z.: Uniqueness and stability for the complex Monge-Ampère equation on compact Kähler manifold. Indiana Univ. Math. J. 52(6), 1697–1701 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Błocki, Z.: Weak solutions to the complex Hessian equation. Ann. Inst. Fourier (Grenoble) 55(5), 1735–1756 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Bloom, T., Levenberg, N.: Pluripotential energy. Potential Anal 36(1), 155–176 (2012)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Caffarelli, L., Nirenberg, L., Spruck, J.: The Dirichlet problem for nonlinear second order elliptic equations, III: functions of the eigenvalues of the Hessian. Acta Math. 155, 261–301 (1985)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Cegrell, U.: Pluricomplex energy. Acta Math. 180(2), 187–217 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Cegrell, U.: The general definition of the complex Monge-Ampère operator. Ann. Inst. Fourier (Grenoble) 54(1), 159–179 (2004)CrossRefMathSciNetGoogle Scholar
  11. 11.
    Chou, K.-S., Wang, X.-J.: Variational theory for Hessian equations. Comm. Pure Appl. Math. 54, 1029–1064 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  12. 12.
    Dinew, S.: An inequality for mixed Monge-Ampère measures. Math. Z. 262, 1–15 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  13. 13.
    Dinew, S.: Uniqueness in \(\cal E(X,\omega )\). J. Funct. Anal. 256(7), 2113–2122 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  14. 14.
    Dinew, S., Kołodziej, S.: Liouville and Calabi-Yau type theorems for complex Hessian equations. arXiv:1203.3995
  15. 15.
    Dinew, S., Pham, H.H.: Convergence in capacity on compact Kähler manifolds. Ann. Sc. Norm. Super. Pisa Cl. Sci. (5) 11(4), 903–919 (2012)zbMATHMathSciNetGoogle Scholar
  16. 16.
    Gårding, L.: An inequality for hyperbolic polynomials. J. Math. Mech. 8, 957–965 (1959)zbMATHMathSciNetGoogle Scholar
  17. 17.
    Guedj, V., Zeriahi, A.: The weighted Monge-Ampère energy of quasiplurisubharmonic functions. J. Funct. Anal. 250(2), 442–482 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  18. 18.
    Kołodziej, S.: The complex Monge-Ampère equation. Acta Math. 180, 69–117 (1998)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Kołodziej, S.: The complex Monge-Ampère equation and theory. Mem. Am. Math. Soc. 178, 64p (2005)Google Scholar
  20. 20.
    Lu, H.C., Nguyen, V.D.: Degenerate complex Hessian equations on compact Kähler manifolds. Indiana Univ. Math. J. (to appear). arXiv:1402.5147
  21. 21.
    Pliś, S.: The smoothing of \(m\)-subharmonic functions. arXiv:1312.1906
  22. 22.
    Trudinger, N.S.: On the Dirichlet problem for Hessian equations. Acta Math. 175, 151–164 (1995)CrossRefzbMATHMathSciNetGoogle Scholar
  23. 23.
    Trudinger, N.S., Wang, X.-J.: Hessian measures II. Ann. Math. 150, 579–604 (1999)CrossRefzbMATHMathSciNetGoogle Scholar
  24. 24.
    Rainwater, J.: A note on the preceding paper. Duke Math. J. 36, 799–800 (1969)CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    Verbitsky, M.: Plurisubharmonic functions in calibrated geometry and \(q\)-convexity. Math. Z. 264, 939–957 (2010)CrossRefzbMATHMathSciNetGoogle Scholar
  26. 26.
    Wang, X.-J.: The k-Hessian Equation, Lecture Notes in Mathematics, 1977. Springer, Dordrecht (2009)Google Scholar
  27. 27.
    Yau, S.-T.: On the Ricci curvature of a compact Kähler manifold and the complex Monge-Ampère equation. Commun. Pure Appl. Math. 31(3), 339–411 (1978)CrossRefzbMATHGoogle Scholar
  28. 28.
    Zeriahi, A.: A viscosity approach to degenerate complex Monge-Ampère equations. Ann. Fac. Sci. Toulouse Math. (6) 22(4), 843–913 (2013)CrossRefzbMATHMathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2014

Authors and Affiliations

  1. 1.Faculty of Mathematics and Computer ScienceJagiellonian UniversityKrakówPoland
  2. 2.Mathematical SciencesChalmers University of TechnologyGothenburgSweden

Personalised recommendations