Fixed point theorem for reflexive Banach spaces and uniformly convex non positively curved metric spaces

Abstract

This article generalizes the work of Ballmann and Światkowski to the case of Reflexive Banach spaces and uniformly convex Busemann spaces, thus giving a new fixed point criterion for groups acting on simplicial complexes.

This is a preview of subscription content, log in to check access.

References

  1. 1.

    Ballmann, W., Świątkowski, J.: On \(L^2\)-cohomology and property (T) for automorphism groups of polyhedral cell complexes. Geom. Funct. Anal. 7(4), 615–645 (1997). doi: 10.1007/s000390050022. http://dx.doi.org/10.1007/s000390050022

  2. 2.

    Bekka, B., de la Harpe, P., Valette, A.: Kazhdan’s property (T), New Mathematical Monographs, vol. 11. Cambridge University Press, Cambridge (2008). doi: 10.1017/CBO9780511542749. http://dx.doi.org/10.1017/CBO9780511542749

  3. 3.

    Bourdon, M.: Un théorème de point fixe sur les espaces \(L^p\). Publ. Mat 56, 375–392 (2012). doi: 10.5565/PUBLMAT5621205. http://projecteuclid.org/DPubS/Repository/1.0/Disseminate?handle=euclid.pm/1340127810&view=body&content-type=pdf_1

  4. 4.

    Dymara, J., Januszkiewicz, T.: New Kazhdan groups. Geom. Dedicata 80(1–3), pp. 311–317 (2000). doi: 10.1023/A:1005255003263. http://dx.doi.org/10.1023/A:1005255003263

  5. 5.

    Fleming, R.J., Jamison, J.E.: Isometries on Banach Spaces: Function Spaces, Chapman & Hall/CRC Monographs and Surveys in Pure and Applied Mathematics. Chapman & Hall/CRC, Boca Raton, FL (2003)

    Google Scholar 

  6. 6.

    Gelander, T., Karlsson, A., Margulis, G.A.: Superrigidity, generalized harmonic maps and uniformly convex spaces. Geom. Funct. Anal. 17(5), pp. 1524–1550 (2008). doi: 10.1007/s00039-007-0639-2. http://dx.doi.org/10.1007/s00039-007-0639-2

  7. 7.

    Goebel, K., Reich, S.: Uniform Convexity, Hyperbolic Geometry, and Nonexpansive Mappings, Monographs and Textbooks in Pure and Applied Mathematics. Marcel Dekker Inc., New York (1984)

    Google Scholar 

  8. 8.

    Gromov, M.: Random walk in random groups. Geom. Funct. Anal. 13(1), pp. 73–146 (2003). doi: 10.1007/s000390300002. http://dx.doi.org/10.1007/s000390300002

  9. 9.

    Izeki, H., Nayatani, S.: Combinatorial harmonic maps and discrete-group actions on Hadamard spaces. Geom. Dedicata 114, pp. 147–188 (2005). doi: 10.1007/s10711-004-1843-y. http://dx.doi.org/10.1007/s10711-004-1843-y

  10. 10.

    Kohlenbach, U., Leuştean, L.: Asymptotically nonexpansive mappings in uniformly convex hyperbolic spaces. J. Eur. Math. Soc. (JEMS) 12(1), 71–92 (2010). doi: 10.4171/JEMS/190. http://dx.doi.org/10.4171/JEMS/190

  11. 11.

    Reich, S., Shafrir, I.: Nonexpansive iterations in hyperbolic spaces. Nonlinear Anal. 15(6), pp. 537–558 (1990). doi: 10.1016/0362-546X(90)90058-O. http://dx.doi.org/10.1016/0362-546X(90)90058-O

  12. 12.

    Żuk, A.: La propriété (T) de Kazhdan pour les groupes agissant sur les polyèdres. C. R. Acad. Sci. Paris Sér. I Math. 323(5), pp. 453–458 (1996)

Download references

Acknowledgments

I would like to thank Uri Bader for many discussions about property (T) and fixed point properties and for communicating the work of Nowak which motivated this article.

Author information

Affiliations

Authors

Corresponding author

Correspondence to Izhar Oppenheim.

Rights and permissions

Reprints and Permissions

About this article

Verify currency and authenticity via CrossMark

Cite this article

Oppenheim, I. Fixed point theorem for reflexive Banach spaces and uniformly convex non positively curved metric spaces. Math. Z. 278, 649–661 (2014). https://doi.org/10.1007/s00209-014-1329-z

Download citation

Keywords

  • Fixed point theorem
  • Busemann space
  • Reflexive Banach space
  • Property (T)

Mathematics Subject Classification (2010)

  • 20F65