On the full holonomy group of Lorentzian manifolds
- 218 Downloads
- 8 Citations
Abstract
The classification of restricted holonomy groups of \(n\)-dimensional Lorentzian manifolds was obtained about ten years ago. However, up to now, not much is known about the structure of the full holonomy group. In this paper we study the full holonomy group of Lorentzian manifolds with a parallel null line bundle. Based on the classification of the restricted holonomy groups of such manifolds, we prove several structure results about the full holonomy. We establish a construction method for manifolds with disconnected holonomy starting from a Riemannian manifold and a properly discontinuous group of isometries. This leads to a variety of examples, most of them being quotients of pp-waves with disconnected holonomy, including a non-flat Lorentzian manifold with infinitely generated holonomy group. Furthermore, we classify the full holonomy groups of solvable Lorentzian symmetric spaces and of Lorentzian manifolds with a parallel null spinor. Finally, we construct examples of globally hyperbolic manifolds with complete spacelike Cauchy hypersurfaces, disconnected full holonomy and a parallel spinor.
Keywords
Lorentzian manifolds Holonomy groups Isometry groups Parallel spinor fields Globally hyperbolic manifolds pp-wavesMathematics Subject Classification (2010)
Primary 53C29 53C50 Secondary 53C27Notes
Acknowledgments
We thank the anonymous referees for valuable comments.
References
- 1.Ambrose, W., Singer, I.M.: A theorem on holonomy. Trans. Am. Math. Soc. 75, 428–443 (1953)CrossRefzbMATHMathSciNetGoogle Scholar
- 2.Bär, C., Gauduchon, P., Moroianu, A.: Generalized cylinders in semi-Riemannian and Spin geometry. Math. Z. 249(3), 545–580 (2005)CrossRefzbMATHMathSciNetGoogle Scholar
- 3.Baum, H.: Spin-Strukturen und Dirac-Operatoren über pseudoriemannschen Mannigfaltigkeiten, volume 41 of Teubner-Texte zur Mathematik. Teubner-Verlagsgesellschaft (1981)Google Scholar
- 4.Baum, H.: Gauge theory. An introduction into differential geometry on fibre bundles. (Eichfeldtheorie. Eine Einführung in die Differentialgeometrie auf Faserbündeln.). Berlin: Springer. xiv, 358 p. (2009)Google Scholar
- 5.Baum, H., Müller, O.: Codazzi spinors and globally hyperbolic manifolds with special holonomy. Math. Z. 258(1), 185–211 (2008)CrossRefzbMATHMathSciNetGoogle Scholar
- 6.Bérard-Bergery, L., Ikemakhen, A.: On the holonomy of Lorentzian manifolds. In Differential Geometry: Geometry in Mathematical Physics and Related Topics (Los Angeles, CA, 1990), volume 54 of Proc. Sympos. Pure Math., pp. 27–40. Am. Math. Soc., Providence, RI (1993)Google Scholar
- 7.Berger, M.: Sur les groupes d’holonomie homogène des variétés à connexion affine et des variétés riemanniennes. Bull. Soc. Math. France 83, 279–330 (1955)zbMATHMathSciNetGoogle Scholar
- 8.Besse, A.L.: Einstein Manifolds. Springer, Berlin-Heidelberg-New York (1987)CrossRefzbMATHGoogle Scholar
- 9.Boubel, C.: On the holonomy of Lorentzian metrics. Ann. Fac. Sci. Toulouse Math. (6) 16(3), 427–475 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
- 10.Cahen, M., Kerbrat, Y.: Champs de vecteurs conformes et transformations conformes des spaces Lorentzian symmetriques. J. Math. Pures Appl. 57, 99–132 (1978)zbMATHMathSciNetGoogle Scholar
- 11.Cahen, M., Parker, M.: Pseudo-Riemannian symmetric spaces. Mem. AMS 24(229), 1–108 (1980)MathSciNetGoogle Scholar
- 12.Cahen, M., Wallach, N.: Lorentzian symmetric spaces. Bull. AMS 76(3), 585–591 (1970)CrossRefzbMATHMathSciNetGoogle Scholar
- 13.Candela, A.M., Flores, J.L., Sanchez, M.: On general plane fronted waves. Gen. Relat. Gravit. 35(4), 631–649 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
- 14.Carrière, Y., Dal’Bo, F.: Généralisations du premier théorème de Bieberbach sur les groupes cristallographiques. Enseign. Math (2) 35(3–4), 245–262 (1989)zbMATHMathSciNetGoogle Scholar
- 15.Duncan, D., Ihrig, E.: Homogeneous spacetimes of zero curvature. Proc. AMS 107(3), 785–795 (1989)CrossRefzbMATHMathSciNetGoogle Scholar
- 16.de Rham, G.: Sur la réducibilité d’un espace de Riemann. Math. Helv. 26, 328–344 (1952)CrossRefzbMATHGoogle Scholar
- 17.Di Scala, A.J., Olmos, C.: The geometry of homogeneous submanifolds of hyperbolic space. Math. Z. 237(1), 199–209 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
- 18.Flores, J.L., Sanchez, M.: Causality and conjugated points in general plane waves. Class. Quantum Gravity 20, 2275–2291 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
- 19.Fried, D., Goldman, W.M.: Three-dimensional affine crystallographic groups. Adv. Math. 47, 1–49 (1983)CrossRefzbMATHMathSciNetGoogle Scholar
- 20.Galaev, A.S.: Metrics that realize all Lorentzian holonomy algebras. Int. J. Geom. Methods Mod. Phys. 3(5–6), 1025–1045 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
- 21.Hitchin, N.: Compact four-dimensional Einstein manifolds. J. Differ. Geom. 9, 435–441 (1974)zbMATHMathSciNetGoogle Scholar
- 22.Joyce, D.D.: Riemannian holonomy groups and calibrated geometry, volume 12 of Oxford Graduate Texts in Mathematics. Oxford University Press, Oxford (2007)Google Scholar
- 23.Kobayashi, S., Nomizu, K.: Fondations of differential geometry, vol. I. Whiley Classics Library, London (1996)Google Scholar
- 24.Leistner, T.: Lorentzian manifolds with special holonomy and parallel spinors. Rend. Circ. Mat. Palermo 2(Suppl. 69), 131–159 (2002)MathSciNetGoogle Scholar
- 25.Leistner, T.: Screen bundles of Lorentzian manifolds and some generalisations of pp-waves. J. Geom. Phys. 56(10), 2117–2134 (2006)CrossRefzbMATHMathSciNetGoogle Scholar
- 26.Leistner, T.: On the classification of Lorentzian holonomy groups. J. Differ. Geom. 76(3), 423–484 (2007)zbMATHMathSciNetGoogle Scholar
- 27.Margulis, G.A.: Complete affine locally flat manifolds with a free fundamental group. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 134, 190–205, Automorphic functions and number theory, II (1984)Google Scholar
- 28.McInnes, B.: Methods of holonomy theory for Ricci-flat Riemannian manifolds. J. Math. Phys. 32(4), 888–896 (1991)CrossRefzbMATHMathSciNetGoogle Scholar
- 29.McInnes, B.: Examples of Einstein manifolds with all possible holonomy groups in dimensions less than seven. J. Math. Phys. 34(9), 4287–4304 (1993)CrossRefzbMATHMathSciNetGoogle Scholar
- 30.Merkulov, S., Schwachhöfer, L.: Classification of irreducible holonomies of torsion-free affine connections. Ann. Math. (2) 150(1), 77–149 (1999)CrossRefzbMATHGoogle Scholar
- 31.Moroianu, A., Semmelmann, U.: Parallel spinors and holonomy groups. J. Math. Phys. 41(4), 2395–2402 (2000)CrossRefzbMATHMathSciNetGoogle Scholar
- 32.Neukirchner, T.: Solvable Pseudo-Riemannian Symmetric Spaces. arXiv:math/0301326 (2003)
- 33.O’Neill, B.: Semi-Riemannian Geometry. Academic Press, NY (1983)zbMATHGoogle Scholar
- 34.Wang, M.Y.: Parallel spinors and parallel forms. Ann. Global Anal. Geom. 7(1), 59–68 (1989)CrossRefzbMATHMathSciNetGoogle Scholar
- 35.Wang, M.Y.: On non-simply connected manifolds with non-trivial parallel spinors. Ann. Global Anal. Geom. 13(1), 31–42 (1995)CrossRefzbMATHMathSciNetGoogle Scholar
- 36.Wilking, B.: On compact Riemannian manifolds with noncompact holonomy groups. J. Differ. Geom. 52(2), 223–257 (1999)zbMATHMathSciNetGoogle Scholar
- 37.Wolf, J.A.: Spaces of Constant Curvature ed. 6. Ams Chelsea Publishing, Providence, RI (2011)Google Scholar
- 38.Wu, H.: On the de Rham decomposition theorem. Ill. J. Math. 8, 291–311 (1964)zbMATHGoogle Scholar