Skip to main content
Log in

The ring of evenly weighted points on the line

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

Let \(M_w = ({\mathbb {P}}^1)^n /\!/\hbox {SL}_2\) denote the geometric invariant theory quotient of \(({\mathbb {P}}^1)^n\) by the diagonal action of \(\hbox {SL}_2\) using the line bundle \(\mathcal {O}(w_1,w_2,\ldots ,w_n)\) on \(({\mathbb {P}}^1)^n\). Let \(R_w\) be the coordinate ring of \(M_w\). We give a closed formula for the Hilbert function of \(R_w\), which allows us to compute the degree of \(M_w\). The graded parts of \(R_w\) are certain Kostka numbers, so this Hilbert function computes stretched Kostka numbers. If all the weights \(w_i\) are even, we find a presentation of \(R_w\) so that the ideal \(I_w\) of this presentation has a quadratic Gröbner basis. In particular, \(R_w\) is Koszul. We obtain this result by studying the homogeneous coordinate ring of a projective toric variety arising as a degeneration of \(M_w\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Fig. 1

Similar content being viewed by others

References

  1. Backelin, J., Fröberg, R.: Koszul algebras, Veronese subrings and rings with linear resolutions. Rev. Roumaine Math. Pures Appl. 30(2), 85–97 (1985)

    MATH  MathSciNet  Google Scholar 

  2. Billey, S., Guillemin, V., Rassart, E.: A vector partition function for the multiplicities of \(\mathfrak{sl}_{k}{\mathbb{C}}\). J. Algebra 278(1), 251–293 (2004). arXiv:math/0307227 [math.CO]

    Google Scholar 

  3. Buczyńska, W., Wiśniewski, J.A.: On geometry of binary symmetric models of phylogenetic trees. J. Eur. Math. Soc. (JEMS), 9(3), 609–635 (2007). arXiv:math/0601357 [math.AG]

    Google Scholar 

  4. Conca, A., Herzog, J., Valla, G.: Sagbi bases with applications to blow-up algebras. J. Reine Angew. Math. 474, 113–138 (1996)

    MATH  MathSciNet  Google Scholar 

  5. De Loera, J.A., McAllister, T.B.: Vertices of Gelfand–Tsetlin polytopes. Discret. Comput. Geom. 32(4), 459–470 (2004). arXiv:math/0309329 [math.CO]

    Google Scholar 

  6. Dolgachev, I.: Lectures on Invariant Theory, Volume 296 of London Mathematical Society Lecture Note Series. Cambridge University Press, Cambridge (2003)

    Google Scholar 

  7. Eisenbud, D.: Commutative Algebra, Volume 150 of Graduate Texts in Mathematics. Springer, New York (1995)

    Google Scholar 

  8. Eisenbud, D., Reeves, A., Totaro, B.: Initial ideals, Veronese subrings, and rates of algebras. Adv. Math. 109(2), 168–187 (1994). arXiv:alg-geom/9310007

    Google Scholar 

  9. Foth, P., Hu, Y.: Toric degenerations of weight varieties and applications. In: Travaux Mathématiques. Fasc. XVI, Trav. Math., XVI, pp. 87–105. Univ. Luxemb., Luxembourg (2005). arXiv:math/0406329 [math.AG]

  10. Fröberg, R.: Koszul algebras. In: Advances in Commutative Ring Theory (Fez, 1997), Volume 205 of Lecture Notes in Pure and Appl. Math., pp. 337–350. Dekker, New York (1999)

  11. Gel’fand, I.M., MacPherson, R.D.: Geometry in Grassmannians and a generalization of the dilogarithm. Adv. Math. 44(3), 279–312 (1982)

    Article  MathSciNet  Google Scholar 

  12. Gonciulea, N., Lakshmibai, V.: Degenerations of flag and Schubert varieties to toric varieties. Transform. Groups 1(3), 215–248 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  13. Hassett, B.: Moduli spaces of weighted pointed stable curves. Adv. Math. 173(2), 316–352 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  14. Hering, M.: Multigraded regularity and the Koszul property. J. Algebra 323(4), 1012–1017 (2010). arXiv:0712.2251 [math.AG]

    Google Scholar 

  15. Howard, B., Millson, J., Snowden, A., Vakil, R.: The Projective Invariants of Ordered Points on the Line. arXiv:math/0505096 [math.AG] (2005)

  16. Howard, B., Millson, J., Snowden, A., Vakil, R.: The equations for the moduli space of \(n\) points on the line. Duke Math. J. 146(2), 175–226 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  17. Howard, B., Millson, J., Snowden, A., Vakil, R.: The ideal of relations for the ring of invariants of \(n\) points on the line. J. Eur. Math. Soc. (JEMS) 14(1), 1–60 (2012). arXiv:0909.3230 [math.AG]

    Google Scholar 

  18. Howe, R.: The classical groups and invariants of binary forms. In: The Mathematical Heritage of Hermann Weyl (Durham, NC, 1987), Volume 48 of Proc. Sympos. Pure Math., pp. 133–166. American Mathematical Society, Providence, RI (1988)

  19. Keel, S., Tevelev, J.: Equations for \(\overline{M}_{0, n}\). Int. J. Math. 20(9), 1159–1184 (2009). arXiv:math/0507093 [math.AG]

  20. Kempe, A.: On regular difference terms. Proc. Lond. Math. Soc. 259, 343–350 (1894)

    MathSciNet  Google Scholar 

  21. King, R.C., Tollu, C., Toumazet, F.: Stretched Littlewood–Richardson and Kostka coefficients. In: Symmetry in Physics, Volume 34 of CRM Proc. Lecture Notes, pp. 99–112. American Mathematical Society, Providence, RI (2004)

  22. Kirillov, A.N., Reshetikhin, N.Yu.: The Bethe ansatz and the combinatorics of Young tableaux. Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI), 155(Differentsialnaya Geometriya, Gruppy Li i Mekh. VIII):65–115, 194 (1986)

  23. Lazarsfeld, R.: Positivity in Algebraic Geometry. I. Springer, Berlin (2004)

    Book  Google Scholar 

  24. Manon, C.: Coordinate rings for the moduli stack of \(SL_{2}(\mathbb{C})\) quasi-parabolic principal bundles on a curve and toric fiber products. J. Algebra 365, 163–183 (2012). arXiv:1105.2045 [math.AC]

    Google Scholar 

  25. Manon, C.: Gorenstein semigroup algebras of weighted trees and ordered points on the projective line. J. Algebra 354, 110–120 (2012). arXiv:0810.1353 [math.AC]

    Google Scholar 

  26. Manon, C.A.: Presentations of semigroup algebras of weighted trees. ProQuest LLC, Ann Arbor, MI (2009). Thesis (Ph.D.)-University of Maryland, College Park

  27. Miller, E., Sturmfels, B.: Combinatorial Commutative Algebra, Volume 227 of Graduate Texts in Mathematics. Springer, New York (2005)

    Google Scholar 

  28. Mumford, D., Fogarty, J., Kirwan, F.: Geometric Invariant Theory, Volume 34 of Ergebnisse der Mathematik und ihrer Grenzgebiete (2) [Results in Mathematics and Related Areas (2)], 3rd edn. Springer, Berlin (1994)

    Google Scholar 

  29. Narayanan, H.: On the complexity of computing Kostka numbers and Littlewood–Richardson coefficients. J. Algebraic Combin. 24(3), 347–354 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  30. Nill, B.: Gorenstein toric fano varieties. Manuscripta Math. 116(2), 183–210 (2005). arXiv:math/0405448 [math.AG]

    Google Scholar 

  31. Polishchuk, A., Positselski, L.: Quadratic Algebras, volume 37 of University Lecture Series. American Mathematical Society, Providence, RI (2005)

  32. Sloane, N.J.A.: The On-line Encyclopedia of Integer Sequences. Published electronically at http://oeis.org, Sequence A012250 (2012)

  33. Sloane, N.J.A.: The On-line Encyclopedia of Integer Sequences. Published electronically at http://oeis.org, Sequence A012249 (2012)

  34. Sturmfels, B.: Gröbner Bases and Convex Polytopes, Volume 8 of University Lecture Series. American Mathematical Society, Providence, RI (1996)

  35. Thaddeus, M.: Geometric invariant theory and flips. J. Am. Math. Soc. 9(3), 691–723 (1996)

    Article  MATH  MathSciNet  Google Scholar 

  36. Witaszek, J.: The Degeneration of the Grassmannian into a Toric Variety and the Calculation of the Eigenspaces of a Torus Action. arXiv:1209.3689 [math.AG] (2012)

Download references

Acknowledgments

We benefited from discussions with many people, including Federico Ardila, Aldo Conca, Sergey Fomin, Nathan Ilten, Chris Manon, Sam Payne, Bernd Sturmfels, and Ravi Vakil. We would also like to thank the referee, Diane Maclagan, and Burt Totaro for helpful comments on a previous version of this paper. Our main thanks is to Vic Reiner who was shaping the direction of this project. Part of this work was done at the Institute of Mathematics and its Applications, at the Mathematisches Forschungsinstitut Oberwolfach, and at the Max-Planck-Institut für Mathematik, and we would like to thank these institutes for providing a great research environment.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Milena Hering.

Additional information

M. Hering was partially supported by an Oberwolfach Leibniz Fellowship and NSF Grant DMS 1001859.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Hering, M., Howard, B.J. The ring of evenly weighted points on the line. Math. Z. 277, 691–708 (2014). https://doi.org/10.1007/s00209-013-1272-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-013-1272-4

Keywords

Navigation