Skip to main content
Log in

Macdonald polynomials as characters of Cherednik algebra modules

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We prove that Macdonald polynomials are characters of irreducible Cherednik algebra modules.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Assaf, S.: Dual equivalence graphs I: a combinatorial proof of LLT and Macdonald, positivity. arXiv:1005.3759.

  2. Blondeau-Fournier, O., Desrosiers, P., Lapointe, L., Mathieu, P.: Macdonald polynomials in superspace: conjectural definition and positivity conjectures. Lett. Math. Phys. 1011, 27–47 (2012). arXiv:1112.5188

    Article  MathSciNet  Google Scholar 

  3. Blondeau-Fournier, O., Desrosiers, P., Lapointe, L., Mathieu, P.: Macdonald polynomials in superspace as eigenfunctions of commuting operators. arXiv:1202.3922

  4. Bezrukavnikov, R., Finkelberg, M.: Wreath Macdonald polynomials and categorical McKay correspondence. arXiv:1208.3696

  5. Dunkl, C.: Symmetric and antisymmetric vector-valued Jack polynomials. Sem. Lothar. Comb. B 64a, 31 (2010). arXiv:1001.4485

  6. Dunkl, C., Griffeth, S.: Generalized Jack polynomials and the representation theory of rational Cherednik algebras. Sel. Math. (N.S.) 16, 791–818 (2010). arXiv:1002.4607

    Google Scholar 

  7. Etingof, P., Ginzburg, V.: Symplectic reflection algebras, Calogero-Moser space, and deformed Harish-Chandra homomorphism. Invent. Math. 147(2), 243–348 (2002). arXiv:math/0011114

    Google Scholar 

  8. Garsia, A., Haiman, M.: A graded representation model for Macdonald’s polynomials. Proc. Nat. Acad. Sci. USA 90(8), 3607–3610 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  9. Garsia, A., Procesi, C.: On certain graded \(S_n\) -modules and the \(q\)-Kostka polynomials. Adv. Math. 94(1), 82–138 (1992)

    Article  MATH  MathSciNet  Google Scholar 

  10. Gordon, I.: Baby Verma modules for rational Cherednik algebras. Bull. London Math. Soc. 35, 321–336 (2003). arXiv:math/0202301

    Google Scholar 

  11. Gordon, I.: On the quotient ring by diagonal invariants. Invent. Math. 153(3), 503–518 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  12. Gordon, I.: Macdonald positivity via the Harish-Chandra \(D\)-module. Invent. Math. 187(3), 637–643 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  13. Gordon, I., Griffeth, S.: Catalan numbers for complex reflection groups. Am. J. Math. 134(6), 1491–1502 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  14. Gordon, I., Stafford, T.: Rational Cherednik algebras and Hilbert schemes. Adv. Math. 198(1), 222–274 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  15. Gordon, I., Stafford, T.: Rational Cherednik algebras and Hilbert schemes. II. Representations and sheaves. Duke Math. J. 132(1), 73–135 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  16. Griffeth, S.: Orthogonal functions generalizing Jack polynomials. Trans. Am. Math. Soc. 362, 6131–6157 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  17. Grojnowski, I., Haiman, M.: Affine Hecke algebras and positivity of LLT and Macdonald polynomials. preprint (2007)

  18. Haiman, M.: Hilbert schemes, polygraphs and the Macdonald positivity conjecture. J. Am. Math. Soc. 14(4), 941–1006 (2001). arXiv:math.AG/0010246

    Google Scholar 

  19. Haiman, M.: Combinatorics, symmetric functions, and Hilbert schemes. Curr. Dev. Math. 2002(1), 39–111 (2002)

    Article  MathSciNet  Google Scholar 

  20. Haiman, M.: Macdonald polynomials and geometry, New perspectives in geometric combinatorics. In: Billera, Björner, Greene, Simion, Stanley (eds), MSRI Publications, vol. 38, (pp. 207–254) Cambridge University Press, Cambridge (1999)

  21. Holmes, R., Nakano, D.: Brauer-type reciprocity for a class of graded associative algebras. J. Algebra 144, 117–126 (1991)

    Article  MATH  MathSciNet  Google Scholar 

  22. Kashiwara, M., Rouquier, R.: Microlocalization of rational Cherednik algebras. Duke Math. J. 144(3), 525–573 (2008). arXiv:0705.1245

    Article  MATH  MathSciNet  Google Scholar 

  23. Macdonald, I.G.: Symmetric functions and Hall polynomials. In: Zelevinsky, A. (ed.) Oxford Mathematical Monographs, 2nd edn. Oxford Science Publications, The Clarendon Press, Oxford University Press, New York (1995)

    Google Scholar 

  24. Varagnolo, M., Vasserot, E.: Finite-dimensional representations of DAHA and affine Springer fibers: the spherical case. Duke Math. J. 147(3), 439–540 (2009). arXiv:0705.2691

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Stephen Griffeth.

Additional information

I am extremely grateful to Adriano Garsia and Luc Lapointe for very enlightening discussions, which were indispensable for the discovery of these results. I am also grateful to Iain Gordon and an anonymous referee for helpful comments on earlier versions of this paper, and to Luc Lapointe for empirical verification of the main result. During the time this research was carried out I have benefitted from the financial support of Fondecyt Proyecto Regular 1110072.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Griffeth, S. Macdonald polynomials as characters of Cherednik algebra modules. Math. Z. 277, 317–323 (2014). https://doi.org/10.1007/s00209-013-1257-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-013-1257-3

Keywords

Navigation