Skip to main content
Log in

Character varieties of abelian groups

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We prove that for every reductive group \(G\) with a maximal torus \({\mathbb {T}}\) and the Weyl group \(W,\, {\mathbb {T}}^N/W\) is the normalization of the irreducible component, \(X_G^0({\mathbb {Z}}^N)\), of the \(G\)-character variety \(X_G({\mathbb {Z}}^N)\) of \({\mathbb {Z}}^N\) containing the trivial representation. We also prove that \(X_G^0({\mathbb {Z}}^N)={\mathbb {T}}^N/W\) for all classical groups. Additionally, we prove that even though there are no irreducible representations in \(X_G^0({\mathbb {Z}}^N)\) for non-abelian \(G\), the tangent spaces to \(X_G^0({\mathbb {Z}}^N)\) coincide with \(H^1({\mathbb {Z}}^N, Ad\, \rho )\). Consequently, \(X_G^0({\mathbb {Z}}^2)\), has the “Goldman” symplectic form for which the combinatorial formulas for Goldman bracket hold.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. The field of complex numbers can be replaced an arbitrary algebraically closed field of zero characteristic throughout the paper.

References

  1. Borel, A.: Sous-groupes commutatifs et torsion des groupes de Lie compacts connexes. Tohoku Math. J. 13(2), 216–240 (1961)

    Article  MATH  MathSciNet  Google Scholar 

  2. Borel, A.: Linear Algebraic Groups, Graduate Texts in Mathematics, 2nd edn. Springer, Berlin (1991)

    Book  Google Scholar 

  3. Borel, A., Friedman, R., Morgan, J.W.: Almost commuting elements in compact Lie groups. arXiv:math/9907007v1[math.GR]

  4. Brown, K.S.: Cohomology of Groups, Graduate Texts in Mathematics. Springer, Berlin (1982)

    Book  Google Scholar 

  5. Drézet, J.-M.: Luna’s slice theorem and applications, 23rd Autumn School in algebraic geometry algebraic group actions and quotients. Wykno, Poland (2000)

  6. Florentino, C., Lawton, S.: Topology of character varieties of abelian groups. arXiv:math/1301.7616

  7. Fulton, W., Harris, J.: Representation Theory. A First Course, Graduate Texts in Mathematics. Springer, Berlin (1991)

    Google Scholar 

  8. Goldman, W.: The symplectic nature of fundamental groups of surfaces. Adv. Math. 54, 200–225 (1984)

    Article  MATH  Google Scholar 

  9. Goldman, W.: Invariant functions on Lie groups and Hamiltonian flows of surface group representations. Invent. Math. 85, 263–302 (1986)

    Article  MATH  MathSciNet  Google Scholar 

  10. Gonzalez-Acuna, F., Montesinos-Amilibia, J.M.: On the character variety of group representations in \(SL(2,{\mathbb{C}})\) and \(PSL(2,{\mathbb{C}})\). Math. Z. 214, 627–652 (1993)

    Article  MATH  MathSciNet  Google Scholar 

  11. Goodman, R., Wallach, N.R.: Representations and Invariants of the Classical Groups. Cambridge Univ. Press, Cambridge (1998)

    MATH  Google Scholar 

  12. Humphreys, J.E.: Linear Algebraic Groups, Graduate Texts in Math. 21. Springer, Berlin (1975)

    Book  Google Scholar 

  13. Kac, V.G., Smilga, A.V.: Vacuum structure in supersymmetric Yang–Mills theories with any gauge group. In: Shifman, M.A. (ed.) The Many Faces of the Superworld, pp. 185–234. World Sci. Publ, River Edge, NJ (2000)

  14. Karaś, M.: Geometric degree of finite extensions of projections. Universitis Iagellonicae, Acta Math, pp. 109–119 (1999)

  15. Li, J.: The space of surface group representations. Manuscr. Math. 78, 223–243 (1993)

    Article  MATH  Google Scholar 

  16. Lubotzky, A., Magid, A.: Varieties of representations of finitely generated groups. Memoirs of the AMS 336 (1985)

  17. Mumford, D.: Algebraic Geometry I, Complex Projective Varieties, 2nd edn. Springer, Berlin (1976)

    MATH  Google Scholar 

  18. Popov, V.L., Vinberg, E.B.: Invariant Theory. In: Parshin, A.N., Shafarevich, I.R. (eds.) Algebraic Geometry IV, Encyclopaedia of Mathematical Sciences, vol. 55. Springer, Berlin (1994)

  19. Richardson, R.W.: Commuting varieties of semisimple Lie algebras and algebraic groups. Compos. Math. 38, 311–327 (1979)

    MATH  Google Scholar 

  20. Thaddeus, M.: Mirror symmetry, Langlands duality, and commuting elements of Lie groups, Internat. Math. Res. Notices 22, 1169–1193 (2001). arXiv:math.AG/0009081

    Google Scholar 

  21. Sikora, A.S.: Quantizations of character varieties and quantum knot invariants. arXiv:0807.0943

  22. Sikora, A.S.: Character varieties. Trans. A.M.S. 364, 5173–5208 (2012). arXiv:0902.2589[math.RT].

  23. Sikora, A.S.: Generating sets for coordinate rings of character varieties. J. Pure Appl. Algeb. 217(11), 2076–2087 (2013), arXiv:1106.4837[math.RT]0

    Google Scholar 

  24. Shafarevitch, I.R.: Foundations of algebraic geometry. Russ. Math. Surv. 24(6), 1–178 (1969)

    Article  Google Scholar 

  25. Springer, T.A.: Linear Algebraic Groups, Progress in Mathematics, 2nd edn. Birkhäuser, Basel (1998)

    Book  Google Scholar 

  26. Steinberg, R.: Regular elements of semisimple algebraic groups. Inst. Hautes Études Sci. Publ. Math. 25, 4980 (1965)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Adam S. Sikora.

Additional information

The author acknowledges support from U.S. National Science Foundation Grants DMS 1107452, 1107263, 1107367 “RNMS: GEometric structures And Representation varieties” (the GEAR Network).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Sikora, A.S. Character varieties of abelian groups. Math. Z. 277, 241–256 (2014). https://doi.org/10.1007/s00209-013-1252-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-013-1252-8

Keywords

Mathematics Subject Classification (2010)

Navigation