Skip to main content

Non-abelian GKM theory


We describe a generalization of GKM theory for actions of arbitrary compact connected Lie groups. To an action satisfying the non-abelian GKM conditions we attach a graph encoding the structure of the non-abelian 1-skeleton, i.e., the subspace of points with isotopy rank at most one less than the rank of the acting group. We show that the algebra structure of the equivariant cohomology can be read off from this graph. In comparison with ordinary abelian GKM theory, there are some special features due to the more complicated structure of the non-abelian 1-skeleton.

This is a preview of subscription content, access via your institution.

Fig. 1
Fig. 2
Fig. 3
Fig. 4
Fig. 5
Fig. 6
Fig. 7
Fig. 8
Fig. 9
Fig. 10


  1. Note that there is a slight error in [7, Proposition 4.2]: on the right hand side of the equation one has to consider the subgroup of \(N_G(\mathfrak {t}_p)\) consisting of those elements which leave invariant \(M^{\mathfrak {t}_p,p}\) instead of the whole normalizer \(N_G(\mathfrak {t}_p)\).


  1. Allday, C., Puppe, V.: Cohomological Methods in Transformation Groups, Cambridge Studies in Advanced Mathematics, vol. 32. Cambridge University Press, Cambridge (1993)

    Book  Google Scholar 

  2. Bredon, G.E.: The free part of a torus action and related numerical equalities. Duke Math. J. 41, 843–854 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  3. Chang, T., Skjelbred, T.: The topological Schur lemma and related results. Ann. Math. 100, 307–321 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  4. Franz, M., Puppe, V.: Exact sequences for equivariantly formal spaces. C. R. Math. Acad. Sci. Soc. R. Can. 33(1), 1–10 (2011)

    MATH  MathSciNet  Google Scholar 

  5. Goertsches, O., Mare, A.-L.: Equivariant cohomology of cohomogeneity-one actions. preprint, arXiv:1110.6310 (2011)

  6. Goertsches, O., Nozawa, H., Töben, D.: Equivariant cohomology of \(K\)-contact manifolds. Math. Ann. 354(4), 1555–1582 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  7. Goertsches, O., Rollenske, S.: Torsion in equivariant cohomology and Cohen-Macaulay actions. Transform. Groups 16(4), 1063–1080 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  8. Goresky, M., Kottwitz, R., MacPherson, R.: Equivariant cohomology, Koszul duality, and the localization theorem. Invent Math. 131(1), 25–83 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  9. Guillemin, V.W., Ginzburg, V.L., Karshon, Y.: Moment Maps, Cobordisms, and Hamiltonian Group Actions, Mathematical Surveys and Monographs, vol. 96. AMS, Providence, RI (2002)

    Book  Google Scholar 

  10. Guillemin, V. W., Holm, T.: GKM theory for torus actions with nonisolated fixed points. Int. Math. Res. Not. 2004 (40), 2105–2124 (2004)

  11. Guillemin, V.W., Holm, T., Zara, C.: A GKM description of the equivariant cohomology ring of a homogeneous space. J. Algebraic Comb. 23(1), 21–41 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  12. Guillemin, V.W., Sternberg, S.: Supersymmetry and Equivariant de Rham Theory. Springer, Berlin (1999)

    Book  MATH  Google Scholar 

  13. Guillemin, V.W., Zara, C.: Equivariant de Rham theory and graphs. Asian J. Math. 3, 49–76 (1999)

    MATH  MathSciNet  Google Scholar 

  14. Guillemin, V.W., Zara, C.: One-skeleta, Betti numbers, and equivariant cohomology. Duke Math. J. 107, 283–349 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  15. Harada, M., Henriques, A., Holm, T.: Computation of generalized equivariant cohomologies of Kac-Moody flag varieties. Adv. Math. 197, 198–221 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  16. Hoelscher, C.A.: Classification of cohomogeneity one manifolds in low dimensions. Pacific J. Math. 246(1), 129–185 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  17. Hsiang, W.-Y.: Cohomology Theory of Topological Transformation Groups, Ergebnisse der Mathematik und ihrer Grenzgebiete, vol. 85. Springer, New York (1975)

    Book  Google Scholar 

  18. Kuroki, S.: Characterization of homogeneous torus manifolds. Osaka J. Math. 47, 285–299 (2010)

    MATH  MathSciNet  Google Scholar 

  19. Kuroki, S.: Classification of torus manifolds with codimension one extended actions. Transform. Groups 16, 481–536 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  20. Kuroki, S.: Introduction to GKM theory, Proceedings of ASARC Workshop, Daecheon & Muju 2009, Trends in Mathematics, 11(2), 113–129 (2009)

  21. Mare, A.-L.: Equivariant cohomology of quaternionic flag manifolds. J. Algebra 319(7), 2830–2844 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  22. Mare, A.-L., Willems, M.: Topology of the octonionic flag manifold preprint, arXiv:0809.4318, to appear in Münster J. Math. (2008)

  23. Masuda, M.: Symmetry of a symplectic toric manifold. J. Symplectic Geom. 8, 359–380 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  24. Masuda, M., Panov, T.: On the cohomology of torus manifolds. Osaka J. Math. 43, 711–746 (2006)

    MATH  MathSciNet  Google Scholar 

  25. Mostert, P.S.: On a compact Lie group acting on a manifold. Ann. Math. 65(3), 447–455 (1957)

    Article  MATH  MathSciNet  Google Scholar 

  26. Wiemeler, M.: Torus manifolds with non-abelian symmetries. Trans. Amer. Math. Soc. 364, 1427–1487 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  27. W. Ziller.: On the geometry of cohomogeneity one manifolds with positive curvature. In: Riemannian Topology and Geometric Structures on Manifolds. Progr. Math., vol. 271, pp. 233–262. Birkhäuser Boston, Boston, MA (2009)

Download references


We wish to thank the anonymous referee for suggesting several improvements.

Author information

Authors and Affiliations


Corresponding author

Correspondence to Augustin-Liviu Mare.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Goertsches, O., Mare, AL. Non-abelian GKM theory. Math. Z. 277, 1–27 (2014).

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI:

Mathematics Subject Classification (2010)

  • 57S15
  • 55N91
  • 57R91