Skip to main content
Log in

Toric surfaces, \(K\)-stability and Calabi flow

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

Let \(X\) be a toric surface and \(u\) be a normalized symplectic potential on the corresponding polygon \(P\). Suppose that the Riemannian curvature is bounded by a constant \(C_1\) and \( \int _{\partial P} u d \sigma < C_2, \) then there exists a constant \(C_3\) depending only on \(C_1, C_2\) and \(P\) such that the diameter of \(X\) is bounded by \(C_3\). Moreoever, we can show that there is a constant \(M > 0\) depending only on \(C_1, C_2\) and \(P\) such that Donaldson’s \(M\)-condition holds for \(u\). As an application, we show that if \((X,P)\) is (analytic) relative \(K\)-stable, then the modified Calabi flow converges to an extremal metric exponentially fast by assuming that the Calabi flow exists for all time and the Riemannian curvature is uniformly bounded along the Calabi flow.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. In fact, the initial metric needs to be invariant under the translation in the imaginary part of the complex variables.

References

  1. Abreu, M.: Kähler geometry of toric varieties and extremal metrics. Int. J. Math. 9, 641–651 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  2. Apostolov, V., Calderbank, D.M.J., Gauduchon, P., Tonnesen-Friedman, C.W.: Hamiltonian 2-forms in Kähler geometry III: extremal metrics and stability. Invent. Math. 173, 547–601 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bessières, L., Besson, G., Boileau, M., Maillot, S., Porti, J.: The Geometrisation of 3-Manifolds, EMS Tracts in Mathematics, volume 13. European Mathematical Society, Zurich (2010)

  4. Calabi, E., Chen, X.X.: Space of Kähler metrics and Calabi flow. J. Differ. Geom. 61(2), 173–193 (2002)

    MATH  MathSciNet  Google Scholar 

  5. Cao, H.D., Zhu, X.P.: A complete proof of the Poincaré and geometrization conjectures—application of the Hamilton–Perelman theory of the Ricci flow. Asian J. Math. 10(2), 165–492 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  6. Chen, X.X., He, W.Y.: On the Calabi flow. Am. J. Math. 130(2), 539–570 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  7. Chen, X.X., He, W.Y.: The Calabi flow on toric Fano surface. Math. Res. Lett. 17(2), 231–241 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  8. Chen, X.X., He, W.Y.: The Calabi flow on Kähler surface with bounded Sobolev constant-(I). Math. Ann. 354(1), 227–261 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  9. Donaldson, S.K.: b-Stability and blow-ups. arXiv:1107.1699

  10. Donaldson, S.K.: Conjectures in Kähler geometry. Strings and geometry, 71–78, Clay Math. Proc., 3, Am. Math. Soc., Providence, RI (2004)

  11. Donaldson, S.K.: Scalar curvature and stability of toric varieties. J. Differ. Geom. 62, 289–349 (2002)

    MATH  MathSciNet  Google Scholar 

  12. Donaldson, S.K.: Interior estimates for solutions of Abreu’s equation. Collect. Math. 56, 103–142 (2005)

    MATH  MathSciNet  Google Scholar 

  13. Donaldson, S.K.: Lower bounds on the Calabi functional. J. Differ. Geom. 70(3), 453–472 (2005)

    MATH  MathSciNet  Google Scholar 

  14. Donaldson, S.K.: Extremal metrics on toric surfaces: a continuity method. J. Differ. Geom. 79(3), 389–432 (2008)

    MATH  MathSciNet  Google Scholar 

  15. Donaldson, S.K.: Constant scalar curvature metrics on toric surfaces. Geom. Funct. Anal. 19(1), 83–136 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  16. Feng, R.J., Huang, H.N.: The global existence and convergence of the Calabi flow on \({\mathbb{C}}^n = {\mathbb{Z}}^n + i {\mathbb{Z}}^n\). J. Funct. Anal. 263(4), 1129–1146 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  17. Futaki, A., Mabuchi, T.: Bilinear forms and extremal Kähler vector fields associated with Kähler classes. Math. Ann. 301, 199–210 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  18. Guillemin, V.: Moment maps and combinatorial invariants of Hamiltonian \(T^n\)- spaces. Birkhauser (1994)

  19. Guillemin, V.: Kähler structures on toric varieties. J. Differ. Geom. 40, 285–309 (1994)

    MATH  MathSciNet  Google Scholar 

  20. Huang, H.N.: On the extension of the Calabi flow on Toric varieties. Ann. Glob. Anal. Geom. 40(1), 1–19 (2011)

    Article  MATH  Google Scholar 

  21. Huang, H.N., Zheng, K.: Stability of Calabi flow near an extremal metric. Ann. Sc. Norm. Super. Pisa Cl. Sci. 11(1), 167–175 (2012)

    Google Scholar 

  22. Kleiner, B., Lott, J.: Notes on Perelman’s papers. Geom. Topol. 12, 2587–2855 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  23. Morgan, J., Tian, G.: Ricci flow and the Poincaré Conjecture. Clay Mathematics Monographs, 3. American Mathematical Society, Providence, RI; Clay Mathematics Institute, Cambridge (2007)

  24. Shi, W.X.: Ricci deformation of the metric on complete noncompact Riemannian manifolds. J. Differ. Geom. 30(2), 303–394 (1989)

    MATH  Google Scholar 

  25. Streets, J.: The gradient flow of \(\int _M |Rm|^2\). J. Geom. Anal. 18(1), 249–271 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  26. Streets, J.: The long time behavior of fourth-order curvature flows. Calc. Var. Partial Differ. Equ. 46(1–2), 39–54 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  27. Székelyhidi, G.: Filtrations and test-configurations. arXiv:1111.4986

  28. Székelyhidi, G.: Optimal test-configurations for toric varieties. J. Differ. Geom. 80, 501–523 (2008)

    MATH  Google Scholar 

  29. Tian, G.: Kähler–Einstein metrics of positive scalar curvature. Invent. Math. 130, 1–57 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  30. Tosatti, V.: Kähler–Ricci flow on stable Fano manifolds. J. Reine Angew. Math. 640, 67–84 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  31. Wang, X., Zhou, B.: On the existence and nonexistence of extremal metrics on toric Kähler surfaces. Adv. Math. 226, 4429–4455 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  32. Yau, S.T.: Review of Kähler–Einstein metrics in algebraic geometry. Israel Math. Conf. Proc. Bar-Ilan Univ. 9, 433–443 (1996)

    Google Scholar 

  33. Zhou, B., Zhu, X.H.: \(K\)-stability on toric manifolds. Proc. Am. Math. Soc. 136(9), 3301–3307 (2008)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The author is grateful to the constant support of Professors Xiuxiong Chen, Pengfei Guan, Vestislav Apostolov and Paul Gauduchon. He is also benefited from the discussions of Si Li, Gábor Székelyhidi and Valentino Tosatti. He would like to thank Jeff Streets for his interests in this work. Thanks also go to the referee for many useful suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hongnian Huang.

Additional information

The research of the author is financially supported by FMJH (Fondation Mathématique Jacques Hadamard).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Huang, H. Toric surfaces, \(K\)-stability and Calabi flow. Math. Z. 276, 953–968 (2014). https://doi.org/10.1007/s00209-013-1228-8

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-013-1228-8

Keywords

Navigation