Skip to main content
Log in

Diophantine approximation of the orbit of 1 in the dynamical system of beta expansions

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We consider the distribution of the orbits of the number 1 under the \(\beta \)-transformations \(T_\beta \) as \(\beta \) varies. Mainly, the size of the set of \(\beta >1\) for which a given point can be well approximated by the orbit of 1 is measured by its Hausdorff dimension. The dimension of the following set \(E\big (\{\ell _n\}_{n\ge 1}, x_0\big )=\Big \{\,\beta >1: |T^n_{\beta }1-x_0|<\beta ^{-\ell _n}, \hbox { for infinitely many}, \, n\in \mathbb{N }\,\Big \}\) is determined, where \(x_0\) is a given point in \([0,1]\) and \(\{\ell _n\}_{n\ge 1}\) is a sequence of integers tending to infinity as \(n\rightarrow \infty \). For the proof of this result, the notion of the recurrence time of a word in symbolic space is introduced to characterise the lengths and the distribution of cylinders (the set of \(\beta \) with a common prefix in the expansion of 1) in the parameter space \(\{\,\beta \in \mathbb{R }: \beta >1\,\}\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Blanchard, F.: \(\beta \)-expansion and symbolic dynamics. Theor. Comput. Sci. 65, 131–141 (1989)

    Article  MATH  MathSciNet  Google Scholar 

  2. Bugeaud, Y.: A note on inhomogeneous Diophantine approximation. Glasgow Math. J. 45, 105–110 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bugeaud, Y.: An inhomogeneous Jarník theroem. J. Anal. Math. 92, 327–349 (2004)

    Article  MATH  MathSciNet  Google Scholar 

  4. Bugeaud, Y., Chevallier, N.: On simultaneous inhomogeneous Diophantine approximation. Acta Arith. 123, 97–123 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bugeaud, Y., S. Harrap, S., Kristensen, S., Velani, S.: On shrinking targets for \({\mathbb{Z}}^m\) actions on tori. Mathematika 56, 193–202 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  6. Chernov, N., Kleinbock, D.: Dynamical Borel-Cantelli lemmas for Gibbs measures. Israel J. Math. 122, 1–27 (2001)

    Article  MATH  MathSciNet  Google Scholar 

  7. Falconer, K.J.: Fractal Geometry: Mathematical Foundations and Application. Wiley, New York (1990)

    Google Scholar 

  8. Fan, A.H., Wang, B.W.: On the lengths of basic intervals in beta expansion. Nonlinearity 25, 1329–1343 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  9. Fan, A.H., Wu, J.: A note on inhomogeneous Diophantine approximation with a general error function. Glasg. Math. J. 48, 187–191 (2006)

    Article  MATH  MathSciNet  Google Scholar 

  10. Färm, D., Persson, T., Schmeling, J.: Dimenion of countable intersections of some sets arising in expansions in non-integer bases. Fundamenta Math. 209, 157–176 (2010)

    Article  MATH  Google Scholar 

  11. Fernández, J.L., Melián, M.V., Pestana, D.: Quantitative recurrence properties in expanding systems. arXiv: math/0703222 (2007)

  12. Hill, R., Velani, S.: The ergodic theory of shrinking targets. Invent. Math. 119, 175–198 (1995)

    Article  MATH  MathSciNet  Google Scholar 

  13. Hill, R., Velani, S.: Metric Diophantine approximation in Julia sets of expanding rational maps. Inst. Hautes Études Sci. Publ. Math 85, 193–216 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  14. Hofbauer, F.: \(\beta \)-shifts have unique maximal measure. Monatsh. Math. 85, 189–198 (1978)

    Article  MathSciNet  Google Scholar 

  15. Levesley, J.: A general inhomogeneous Jarník-Besicovitch theorem. J. Number Theory 71, 65–80 (1998)

    Article  MATH  MathSciNet  Google Scholar 

  16. Li, B., Wu, J.: Beta-expansion and continued fraction expansion. J. Math. Anal. Appl. 339, 1322–1331 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  17. Parry, W.: On the \(\beta \)-expansions of real numbers. Acta Math. Acad. Sci. Hunger. 11, 401–416 (1960)

    Article  MATH  MathSciNet  Google Scholar 

  18. Persson, T., Schmeling, J.: Dyadic Diophantine approximation and Katok’s horseshoe approximation. Acta Arith. 132, 205–230 (2008)

    Article  MATH  MathSciNet  Google Scholar 

  19. Pfister, C.-E., Sullivan, W.G.: Large deviations estimates for dynamical systems without the specification property. Applications to the \(\beta \)-shifts. Nonlinearity 18, 237–261 (2005)

    Article  MATH  MathSciNet  Google Scholar 

  20. Rényi, A.: Representations for real numbers and their ergodic properties. Acta Math. Acad. Sci. Hungar. 8, 477–493 (1957)

    Article  MATH  MathSciNet  Google Scholar 

  21. Schmeling, J.: Symbolic dynamics for \(\beta \)-shifts and self-normal numbers. Ergod. Theory Dyn. Syst. 17, 675–694 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  22. Schmeling, J., Troubetzkoy, S.: Inhomogeneous Diophantine approximation and angular recurrence properties of the billiard flow in certain polygons. Math. Sbornik 194, 295–309 (2003)

    Article  MATH  MathSciNet  Google Scholar 

  23. Shen, L.M., Wang, B.W.: Shrinking target problems for beta-dynamical system. Sci. China Math. 56, 91–104 (2013)

    Article  MATH  MathSciNet  Google Scholar 

  24. Stratmann, B., Urbański, M.: Jarník and Julia; a Diophantine analysis for parabolic rational maps. Math. Scand. 91, 27–54 (2002)

    MATH  MathSciNet  Google Scholar 

  25. Tan, B., Wang, B.W.: Quantitive recurrence properties of beta dynamical systems. Adv. Math. 228, 2071–2097 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  26. Thompson, D.: Irregular sets, the \(\beta \)-transformation and the almost specification property. Trans. Am. Math. Soc. 364, 5395–5414 (2012)

    Article  MATH  Google Scholar 

  27. Urbański, M.: Diophantine analysis of conformal iterated function systems. Monatsh. Math. 137, 325–340 (2002)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

This work was in part finished when some of the authors visited the Morning Center of Mathematics (Beijing). The authors are grateful for the host’s warm hospitality. This work was partially supported by NSFC Nos. 11126071, 10901066, 11225101 and 11171123.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Baowei Wang.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Li, B., Persson, T., Wang, B. et al. Diophantine approximation of the orbit of 1 in the dynamical system of beta expansions. Math. Z. 276, 799–827 (2014). https://doi.org/10.1007/s00209-013-1223-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-013-1223-0

Keywords

Mathematics Subject Classification (2010)

Navigation