Skip to main content
Log in

On the Hall algebra of semigroup representations over \(\mathbb F _1\)

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

Let \(\mathrm{A }\) be a finitely generated semigroup with 0. An \(\mathrm{A }\)-module over \(\mathbb F _1\) (also called an \(\mathrm{A }\)-set), is a pointed set \((M,*)\) together with an action of \(\mathrm{A }\). We define and study the Hall algebra \(\mathbb H _{\mathrm{A }}\) of the category \(\mathcal C _{\mathrm{A }}\) of finite \(\mathrm{A }\)-modules. \(\mathbb H _{\mathrm{A }}\) is shown to be the universal enveloping algebra of a Lie algebra \(\mathfrak n _{\mathrm{A }}\), called the Hall Lie algebra of \(\mathcal C _{\mathrm{A }}\). In the case of \(\langle t \rangle \)—the free monoid on one generator \(\langle t \rangle \), the Hall algebra (or more precisely the Hall algebra of the subcategory of nilpotent \(\langle t \rangle \)-modules) is isomorphic to Kreimer’s Hopf algebra of rooted forests. This perspective allows us to define two new commutative operations on rooted forests. We also consider the examples when \(\mathrm{A }\) is a quotient of \(\langle t \rangle \) by a congruence, and the monoid \(G \cup \{ 0\}\) for a finite group \(G\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. It is common to include a twist which makes this algebra over \(\mathbb{Q }(\nu )\), where \(\nu ^2 = q\).

References

  1. Chapoton, F.: Free pre-Lie algebras are free as Lie algebras. Can. Math. Bull. 53(3), 425–437 (2010)

    Article  MATH  MathSciNet  Google Scholar 

  2. Connes, A., Consani, C.: On the Notion of Geometry Over \({{\mathbb{F}}_1}\). Preprint arXiv:0809.2926

  3. Connes, A., Consani, C.: Schemes Over \({{\mathbb{F}}_1}\) and Zeta Functions. Preprint arXiv:0903.2024

  4. Connes, A., Kreimer, D.: Insertion and elimination: the doubly infinite Lie algebra of Feynman graphs. Ann. Henri Poincaré 3(3), 411–433 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  5. Chu, C., Lorscheid, O., Santhanam, R.: Sheaves and \(K\)-theory for \({{\mathbb{F}}_1}\)-schemes. Adv. Math. 229(4), 2239–2286 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  6. Deitmar, A.: Schemes over \({{\mathbb{F}}_1}\). Number fields and function fields-two parallel worlds. In: Progr. Math., vol. 239, pp. 87–100. Birkhäuser, Boston, MA (2005)

  7. Deitmar, A.: \({{\mathbb{F}}_1}\)-schemes and toric varieties. Beiträge Algebra Geom. 49(2), 517–525 (2008)

    MATH  MathSciNet  Google Scholar 

  8. Dyckerhof, T., Kapranov, M.: Higher Segal Spaces. Work in progress

  9. Foissy, L.: Les algebres de Hopf des arbres enracines, I. Bull. Sci. Math. 126(3), 193–239 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  10. Haran, S.M.J.: Non-additive Prolegomena (to Any Future Arithmetic that will be Able to Present Itself as a Geometry). Preprint arXiv:0911.3522

  11. Hubery, A.: From triangulated categories to Lie algebras: a theorem of Peng and Xiao. Trends in representation theory of algebras and related topics. In: Contemp. Math., vol. 406, pp. 51–66. Amer. Math. Soc., Providence, RI (2006)

  12. Kilp, Mati, Knauer, Ulrich, Mikhalev, Alexander V.: Monoids, acts and categories. With applications to wreath products and graphs. A handbook for students and researchers. de Gruyter Expositions in Mathematics, 29. Walter de Gruyter & Co., Berlin (2000)

  13. Kreimer, D.: On the Hopf algebra structure of perturbative quantum field theories. Adv. Theory Math. Phys. 2, 303–334 (1998)

    MATH  MathSciNet  Google Scholar 

  14. Kremnizer, K., Szczesny, M.: Feynman graphs, rooted trees, and Ringel–Hall algebras. Comm. Math. Phys. 289(2), 561–577 (2009)

    Article  MATH  MathSciNet  Google Scholar 

  15. Kapranov, M., Smirnov, A.: Cohomology, Determinants, and Reciprocity Laws: Number Field Case. (Unpublished)

  16. Mahanta, S.: \(G\)-Theory of \({{\mathbb{F}}_1}\)-Algebras I: The Equivariant Nishida Problem. Preprint arXiv:1110.6001

  17. Ringel, C.M.: Hall algebras, Topics in algebra, Part 1 (Warsaw, 1988), pp. 433–447. Banach Center Publ., 26, Part 1, PWN, Warsaw (1990)

  18. Ringel, C.M.: Hall algebras and quantum groups. Invent. Math. 101(3), 583–591 (1990)

    Article  MATH  MathSciNet  Google Scholar 

  19. Schiffmann, O.: Lectures on Hall Algebras. Preprint math.RT/0611617

  20. Solomon, L.: The Burnside algebra of a finite group. J. Comb. Theory 1, 603–615 (1967)

    Google Scholar 

  21. Soulé, C.: Les Variétés sur le corps à un élément. Moscow Math. J. 4, 217–244 (2004)

    MATH  Google Scholar 

  22. Szczesny, M.: Incidence categories. J. Pure Appl. Algebra 215(4), 303–309 (2011)

    Article  MATH  MathSciNet  Google Scholar 

  23. Szczesny, M.: Representations of quivers over \({{\mathbb{F}}_1}\) and Hall algebras. IMRN (to appear). Preprint arXiv: 1006.0912

  24. Szczesny, M.: Representations of Quivers Over \({{\mathbb{F}}_1}\) and Hall Algebras \(II\). In progress

  25. Szczesny, M.: On the Hall algebra of coherent sheaves on \({\mathbb{P}}^1\) over \({{\mathbb{F}}_1}\). J. Pure Appl. Algebra 216(3), 662–672 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  26. Toën, B., Vaquié, M.: Au-dessous de Spec \({\mathbb{Z}}\). J. K-Theory 3(3), 437–500 (2009)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

I would like to thank Oliver Lorscheid and Anton Deitmar for valuable conversations. I’m especially grateful to Dirk Kreimer for his hospitality during my visit to HU Berlin where part of this paper was written, as well as many interesting ideas. Finally, I would like to thank the anonymous referee for their valuable suggestions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Matt Szczesny.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Szczesny, M. On the Hall algebra of semigroup representations over \(\mathbb F _1\) . Math. Z. 276, 371–386 (2014). https://doi.org/10.1007/s00209-013-1204-3

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-013-1204-3

Keywords

Navigation