Skip to main content
Log in

Duality for Koszul homology over Gorenstein rings

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We study Koszul homology over local Gorenstein rings. It is well known that if an ideal is strongly Cohen–Macaulay the Koszul homology algebra satisfies Poincaré duality. We prove a version of this duality which holds for all ideals and allows us to give two criteria for an ideal to be strongly Cohen–Macaulay. The first can be compared to a result of Hartshorne and Ogus; the second is a generalization of a result of Herzog, Simis, and Vasconcelos using sliding depth.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Avramov, L.L., Golod, E.S.: The homology of algebra of the Koszul complex of a local Gorenstein ring. Mat. Zametki 9, 53–58 (1971)

    MATH  MathSciNet  Google Scholar 

  2. Avramov, L.L., Herzog, J.: The Koszul algebra of a codimension 2 embedding. Math. Z. 175(3), 249–260 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  3. Bruns, W., Herzog, J.: Cohen–Macaulay Rings, Cambridge Studies in Advanced Mathematics, vol. 39. Cambridge University Press, Cambridge (1993)

    Google Scholar 

  4. Chardin, M.: Regularity of ideals and their powers. Institut de Mathematiques de Jussieu, Prepublication 364 (2004)

  5. Golod, E.S.: On duality in the homology algebra of a Koszul complex. Fundam. Prikl. Mat. 9(1), 77–81 (2003)

    Google Scholar 

  6. Hartshorne, R., Ogus, A.: On the factoriality of local rings of small embedding codimension. Commun. Algebra 1, 415–437 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  7. Herzog, J., Simis, A., Vasconcelos, W.V.: On the arithmetic and homology of algebras of linear type. Trans. Am. Math. Soc. 283(2), 661–683 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  8. Herzog, J., Vasconcelos, W.V., Villareal, R.: Ideals with sliding depth. Nagoya Math. J. 99, 159–172 (1985)

    MATH  MathSciNet  Google Scholar 

  9. Herzog, J.: Komplexe Auflösungen und Dualität in der lokalen Algebra. Universität Regensburg, Habilitationsschrift (1974)

    Google Scholar 

  10. Huneke, C.: Linkage and the Koszul homology of ideals. Am. J. Math. 104(5), 1043–1062 (1982)

    Article  MATH  MathSciNet  Google Scholar 

  11. Huneke, C.: Strongly Cohen–Macaulay schemes and residual intersections. Trans. Am. Math. Soc. 277(2), 739–763 (1983)

    Article  MATH  MathSciNet  Google Scholar 

  12. Huneke, C.: The Koszul homology of an ideal. Adv. Math. 56, 295–318 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  13. Kunz, E.: Almost complete intersections are not Gorenstein rings. J. Algebra 28, 111–115 (1974)

    Article  MATH  MathSciNet  Google Scholar 

  14. Simis, A., Vasconcelos, W.V.: The syzygies of the conormal module. Am. J. Math. 103(2), 203–224 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  15. Valla, G.: On the symmetric and Rees algebras of an ideal. Manuscr. Math. 30(3), 239–255 (1980)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Acknowledgments

The authors would like to thank Craig Huneke for useful conversations regarding this paper, including comments which simplified the proof of Theorem 2.2.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Janet Striuli.

Additional information

This research was partly supported by NSF grant DMS 0901427 (J.S.), and NSF grant DMS 100334 (C.M.).

Rights and permissions

Reprints and permissions

About this article

Cite this article

Miller, C., Rahmati, H. & Striuli, J. Duality for Koszul homology over Gorenstein rings. Math. Z. 276, 329–343 (2014). https://doi.org/10.1007/s00209-013-1202-5

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-013-1202-5

Keywords

Mathematics Subject Classification (2010)

Navigation