Mathematische Zeitschrift

, Volume 276, Issue 1–2, pp 299–328 | Cite as

Moduli spaces of hyperelliptic curves with A and D singularities

  • Maksym FedorchukEmail author


We introduce moduli spaces of quasi-admissible hyperelliptic covers with at worst A and D singularities. The stability conditions for these moduli spaces depend on two rational parameters describing allowable singularities. For the extreme values of the parameters, we obtain the stacks of stable limits of \(A_n\) and \(D_n\) singularities, and the quotients of the miniversal deformation spaces of these singularities by natural \(\mathbb G _m\)-actions. We interpret the intermediate spaces as log canonical models of the stacks of stable limits of \(A_n\) and \(D_n\) singularities.


Moduli stacks Moduli of curves Singularities  Log minimal model program 

Mathematics Subject Classification (2000)

Primary 14D23 Secondary 14H20 14B07 



The whole project was motivated by a question asked by Brendan Hassett to whom we are especially grateful. We had numerous helpful discussions related to the content of this paper with Jarod Alper, Aise Johan de Jong, and David Smyth. We thank Sebastian Casalaina-Martin and Radu Laza for sharing an early version of [9]. We also thank the referee whose suggestions significantly improved the exposition.


  1. 1.
    Abramovich, D., Corti, A., Vistoli, A.: Twisted bundles and admissible covers. Commun. Algebra 31(8), 3547–3618 (2003) Special issue in honor of Steven L. KleimanGoogle Scholar
  2. 2.
    Arnol’d, V.I., Goryunov, V.V., Lyashko, O.V., Vasil’ev, V.A.: Singularity theory I. Springer, Berlin (1998)CrossRefGoogle Scholar
  3. 3.
    Arnol’d, V.I.: Critical points of smooth functions, and their normal forms. Uspehi Mat. Nauk 30(5(185)), 3–65 (1975)Google Scholar
  4. 4.
    Arnol’d, V.I.: Local normal forms of functions. Invent. Math. 35, 87–109 (1976)CrossRefMathSciNetGoogle Scholar
  5. 5.
    Abramovich, D., Vistoli, A.: Compactifying the space of stable maps. J. Am. Math. Soc. 15(1), 27–75 (2002)CrossRefzbMATHMathSciNetGoogle Scholar
  6. 6.
    Arsie, A., Vistoli, A.: Stacks of cyclic covers of projective spaces. Compos. Math. 140(3), 647–666 (2004)CrossRefzbMATHMathSciNetGoogle Scholar
  7. 7.
    Cadman, C.: Using stacks to impose tangency conditions on curves. Am. J. Math. 129(2), 405–427 (2007)CrossRefzbMATHMathSciNetGoogle Scholar
  8. 8.
    Cautis, S.: The abelian monodromy extension property for families of curves. Math. Ann. 344(3), 717–747 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  9. 9.
    Casalaina-Martin, S., Laza, R.: Simultaneous semi-stable reduction for curves with ADE singularities. Trans. Am. Math. Soc. 365(5), 2271–2295 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  10. 10.
    Conrad, B.: The Keel-Mori theorem via stacks. Available at
  11. 11.
    De Concini, C., Procesi, C.: Wonderful models of subspace arrangements. Selecta Mathematica (New Series) 1(3), 459–494 (1995)Google Scholar
  12. 12.
    de Jong, A.J.: Smoothness, semi-stability and alterations. Inst. Hautes Études Sci. Publ. Math. 83, 51–93 (1996)CrossRefzbMATHGoogle Scholar
  13. 13.
    de Jong, A.J., Oort, F.: On extending families of curves. J. Algebraic Geom. 6(3), 545–562 (1997)zbMATHMathSciNetGoogle Scholar
  14. 14.
    Deligne, P., Mumford, D.: The irreducibility of the space of curves of given genus. Inst. Hautes Études Sci. Publ. Math. 36, 75–109 (1969)CrossRefzbMATHMathSciNetGoogle Scholar
  15. 15.
    Edidin, D., Hassett, B., Kresch, A., Vistoli, A.: Brauer groups and quotient stacks. Am. J. Math. 123(4), 761–777 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  16. 16.
    Fedorchuk, M.: Moduli of weighted pointed stable curves and log canonical models of \(\overline{\cal M}_{g, n}\). Math. Res. Lett. 18(4), 663–675 (2011)CrossRefzbMATHMathSciNetGoogle Scholar
  17. 17.
    Hassett, B.: Local stable reduction of plane curve singularities. J. Reine Angew. Math. 520, 169–194 (2000)zbMATHMathSciNetGoogle Scholar
  18. 18.
    Hassett, B.: Moduli spaces of weighted pointed stable curves. Adv. Math. 173(2), 316–352 (2003)CrossRefzbMATHMathSciNetGoogle Scholar
  19. 19.
    Hassett, B., Hyeon, D.: Log canonical models for the moduli space of curves: the first divisorial contraction. Trans. Am. Math. Soc. 361(8), 4471–4489 (2009)CrossRefzbMATHMathSciNetGoogle Scholar
  20. 20.
    Hassett, B., Hyeon, D.: Log minimal model program for the moduli space of curves: the first flip. Ann. Math. (2) 177(3), 911–968 (2013)CrossRefzbMATHMathSciNetGoogle Scholar
  21. 21.
    Harris, J., Mumford, D.: On the Kodaira dimension of the moduli space of curves. Invent. Math. 67(1), 23–88 (1982) with an appendix by William FultonGoogle Scholar
  22. 22.
    Hirsh, T., Martin, B.: Deformations with section: cotangent cohomology, flatness conditions, and modular subgerms. J. Math. Sci. 132(6), 739–756 (2006)Google Scholar
  23. 23.
    Laumon, G., Moret-Bailly, L.: Champs algébriques, vol. 39. Ergebnisse der Mathematik und ihrer Grenzgebiete. 3. Folge. A Series of Modern Surveys in Mathematics. Springer, Berlin (2000)Google Scholar
  24. 24.
    Mond, D., van Straten, D.: The structure of the discriminant of some space-curve singularities. Q. J. Math. 52(3), 355–365 (2001)CrossRefzbMATHMathSciNetGoogle Scholar
  25. 25.
    Pinkham, H.C.: Deformations of algebraic varieties with \(G_{m}\) action. Société Mathématique de France, Paris (1974) Astérisque, No. 20Google Scholar
  26. 26.
    Tjurina, G.N.: Resolution of singularities of flat deformations of double rational points. Funkcional. Anal. i Priložen. 4(1), 77–83 (1970)MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Department of MathematicsColumbia UniversityNew YorkUSA
  2. 2.Department of MathematicsBoston CollegeChestnut HillUSA

Personalised recommendations