Abstract
For a finite \(p\)-group \(G\) and a bounded below \(G\)-spectrum \(X\) of finite type mod \(p\), the \(G\)-equivariant Segal conjecture for \(X\) asserts that the canonical map \(X^G \rightarrow X^{hG}\), from \(G\)-fixed points to \(G\)-homotopy fixed points, is a \(p\)-adic equivalence. Let \(C_{p^n}\) be the cyclic group of order \(p^n\). We show that if the \(C_p\)-equivariant Segal conjecture holds for a \(C_{p^n}\)-spectrum \(X\), as well as for each of its geometric fixed point spectra \(\varPhi ^{C_{p^e}}(X)\) for \(0 < e < n\), then the \(C_{p^n}\)-equivariant Segal conjecture holds for \(X\). Similar results also hold for weaker forms of the Segal conjecture, asking only that the canonical map induces an equivalence in sufficiently high degrees, on homotopy groups with suitable finite coefficients.
This is a preview of subscription content, access via your institution.
References
Adams, J.F.: Graeme Segal’s Burnside ring conjecture. Bull. Am. Math. Soc. (N.S.) 6(2), 201–210 (1982)
Adams, J.F., Gunawardena, J.H., Miller, H.: The Segal conjecture for elementary abelian \(p\)-groups. Topology 24(4), 435–460 (1985)
Ausoni, Ch., Rognes, J.: Algebraic \(K\)-theory of topological \(K\)-theory. Acta Math. 188(1), 1–39 (2002)
Ausoni, Ch., Rognes, J.: Algebraic \(K\)-theory of the first Morava \(K\)-theory. J. Eur. Math. Soc. 14, 1041–1079 (2012)
Bökstedt, M., Hsiang, W.C., Madsen, I.: The cyclotomic trace and the \(K\)-theoretic analogue of Novikov’s conjecture. Proc. Nat. Acad. Sci. USA 86(22), 8607–8609 (1989)
Bruner, R.R., May, J.P., McClure, J.E., Steinberger, M.: \(H_\infty \) ring spectra and their applications. Lecture Notes in Mathematics, vol. 1176. Springer, Berlin (1986)
Carlsson, G.: Equivariant stable homotopy and Segal’s Burnside ring conjecture. Ann. Math. (2) 120(2), 189–224 (1984)
Caruso, J., May, J.P., Priddy, S.B.: The Segal conjecture for elementary abelian \(p\)-groups. II. \(p\)-adic completion in equivariant cohomology. Topology 26(4), 413–433 (1987)
Greenlees, J.P.C.: Representing Tate cohomology of \(G\)-spaces. Proc. Edinburgh Math. Soc. (2) 30(3), 435–443 (1987)
Greenlees, J.P.C., May, J.P.: Generalized Tate cohomology. Mem. Am. Math. Soc. 113(543), viii+178 (1995)
Gunawardena, J.H.C.: Segal’s Conjecture for Cyclic Groups of (Odd) Prime Order. J. T. Knight Prize Essay, University of Cambridge, Cambridge (1980)
Hesselholt, L., Madsen, I.: On the \(K\)-theory of finite algebras over Witt vectors of perfect fields. Topology 36(1), 29–101 (1997)
Hovey, M., Palmieri, J.H., Strickland, N.P.: Axiomatic stable homotopy theory. Mem. Am. Math. Soc. 128(610), x+114 (1997)
Lewis, L.G. Jr., May, J.P., Steinberger, M.: Equivariant stable homotopy theory. Lecture Notes in Mathematics, vol. 1213, With contributions by J. E. McClure. Springer, Berlin (1986)
Lin, W.H., Davis, D.M., Mahowald, M.E., Adams, J.F.: Calculation of Lin’s Ext groups. Math. Proc. Camb. Philos. Soc. 87(3), 459–469 (1980)
Lunøe-Nielsen, S., Rognes, J.: The Segal conjecture for topological Hochschild homology of complex cobordism. J. Topol. 4, 591–622 (2011)
Lunøe-Nielsen, S., Rognes, J.: The topological Singer construction. Doc. Math. 17, 861–909 (2012)
Miller, H., Wilkerson, C.: On the Segal conjecture for periodic groups. In: Proceedings of the Northwestern Homotopy Theory Conference (Evanston, Ill., 1982), Contemp. Math., vol. 19. Amer. Math. Soc. Providence, RI, pp. 233–246 (1983)
Ravenel, D.C.: The Segal conjecture for cyclic groups. Bull. Lond. Math. Soc. 13(1), 42–44 (1981)
Ravenel, D.C.: The Segal conjecture for cyclic groups and its consequences. Am. J. Math. 106(2), 415–446. With an appendix by Haynes R. Miller (1984)
Rognes, J.: Topological cyclic homology of the integers at two. J. Pure Appl. Algebra 134(3), 219–286 (1999)
Smith, L.: On realizing complex bordism modules. Applications to the stable homotopy of spheres. Am. J. Math. 92, 793–856 (1970)
Toda, H.: On spectra realizing exterior parts of the Steenrod algebra. Topology 10, 53–65 (1971)
Tsalidis, S.: Topological Hochschild homology and the homotopy descent problem. Topology 37(4), 913–934 (1998)
Author information
Authors and Affiliations
Corresponding author
Rights and permissions
About this article
Cite this article
Bökstedt, M., Bruner, R.R., Lunøe-Nielsen, S. et al. On cyclic fixed points of spectra. Math. Z. 276, 81–91 (2014). https://doi.org/10.1007/s00209-013-1187-0
Received:
Accepted:
Published:
Issue Date:
DOI: https://doi.org/10.1007/s00209-013-1187-0
Keywords
- Segal conjecture
- Cyclic \(p\)-group
- Fixed points
- Tate construction
- Smash power
- Topological Hochschild homology