Skip to main content
Log in

On cyclic fixed points of spectra

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

For a finite \(p\)-group \(G\) and a bounded below \(G\)-spectrum \(X\) of finite type mod \(p\), the \(G\)-equivariant Segal conjecture for \(X\) asserts that the canonical map \(X^G \rightarrow X^{hG}\), from \(G\)-fixed points to \(G\)-homotopy fixed points, is a \(p\)-adic equivalence. Let \(C_{p^n}\) be the cyclic group of order \(p^n\). We show that if the \(C_p\)-equivariant Segal conjecture holds for a \(C_{p^n}\)-spectrum \(X\), as well as for each of its geometric fixed point spectra \(\varPhi ^{C_{p^e}}(X)\) for \(0 < e < n\), then the \(C_{p^n}\)-equivariant Segal conjecture holds for \(X\). Similar results also hold for weaker forms of the Segal conjecture, asking only that the canonical map induces an equivalence in sufficiently high degrees, on homotopy groups with suitable finite coefficients.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Institutional subscriptions

Similar content being viewed by others

References

  1. Adams, J.F.: Graeme Segal’s Burnside ring conjecture. Bull. Am. Math. Soc. (N.S.) 6(2), 201–210 (1982)

    Article  MATH  Google Scholar 

  2. Adams, J.F., Gunawardena, J.H., Miller, H.: The Segal conjecture for elementary abelian \(p\)-groups. Topology 24(4), 435–460 (1985)

    Article  MATH  MathSciNet  Google Scholar 

  3. Ausoni, Ch., Rognes, J.: Algebraic \(K\)-theory of topological \(K\)-theory. Acta Math. 188(1), 1–39 (2002)

    Article  MATH  MathSciNet  Google Scholar 

  4. Ausoni, Ch., Rognes, J.: Algebraic \(K\)-theory of the first Morava \(K\)-theory. J. Eur. Math. Soc. 14, 1041–1079 (2012)

    Article  MATH  MathSciNet  Google Scholar 

  5. Bökstedt, M., Hsiang, W.C., Madsen, I.: The cyclotomic trace and the \(K\)-theoretic analogue of Novikov’s conjecture. Proc. Nat. Acad. Sci. USA 86(22), 8607–8609 (1989)

    Article  MATH  Google Scholar 

  6. Bruner, R.R., May, J.P., McClure, J.E., Steinberger, M.: \(H_\infty \) ring spectra and their applications. Lecture Notes in Mathematics, vol. 1176. Springer, Berlin (1986)

  7. Carlsson, G.: Equivariant stable homotopy and Segal’s Burnside ring conjecture. Ann. Math. (2) 120(2), 189–224 (1984)

    Article  MATH  MathSciNet  Google Scholar 

  8. Caruso, J., May, J.P., Priddy, S.B.: The Segal conjecture for elementary abelian \(p\)-groups. II. \(p\)-adic completion in equivariant cohomology. Topology 26(4), 413–433 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  9. Greenlees, J.P.C.: Representing Tate cohomology of \(G\)-spaces. Proc. Edinburgh Math. Soc. (2) 30(3), 435–443 (1987)

    Article  MATH  MathSciNet  Google Scholar 

  10. Greenlees, J.P.C., May, J.P.: Generalized Tate cohomology. Mem. Am. Math. Soc. 113(543), viii+178 (1995)

  11. Gunawardena, J.H.C.: Segal’s Conjecture for Cyclic Groups of (Odd) Prime Order. J. T. Knight Prize Essay, University of Cambridge, Cambridge (1980)

  12. Hesselholt, L., Madsen, I.: On the \(K\)-theory of finite algebras over Witt vectors of perfect fields. Topology 36(1), 29–101 (1997)

    Article  MATH  MathSciNet  Google Scholar 

  13. Hovey, M., Palmieri, J.H., Strickland, N.P.: Axiomatic stable homotopy theory. Mem. Am. Math. Soc. 128(610), x+114 (1997)

  14. Lewis, L.G. Jr., May, J.P., Steinberger, M.: Equivariant stable homotopy theory. Lecture Notes in Mathematics, vol. 1213, With contributions by J. E. McClure. Springer, Berlin (1986)

  15. Lin, W.H., Davis, D.M., Mahowald, M.E., Adams, J.F.: Calculation of Lin’s Ext groups. Math. Proc. Camb. Philos. Soc. 87(3), 459–469 (1980)

    Article  MATH  MathSciNet  Google Scholar 

  16. Lunøe-Nielsen, S., Rognes, J.: The Segal conjecture for topological Hochschild homology of complex cobordism. J. Topol. 4, 591–622 (2011)

    Article  MathSciNet  Google Scholar 

  17. Lunøe-Nielsen, S., Rognes, J.: The topological Singer construction. Doc. Math. 17, 861–909 (2012)

    MathSciNet  Google Scholar 

  18. Miller, H., Wilkerson, C.: On the Segal conjecture for periodic groups. In: Proceedings of the Northwestern Homotopy Theory Conference (Evanston, Ill., 1982), Contemp. Math., vol. 19. Amer. Math. Soc. Providence, RI, pp. 233–246 (1983)

  19. Ravenel, D.C.: The Segal conjecture for cyclic groups. Bull. Lond. Math. Soc. 13(1), 42–44 (1981)

    Article  MATH  MathSciNet  Google Scholar 

  20. Ravenel, D.C.: The Segal conjecture for cyclic groups and its consequences. Am. J. Math. 106(2), 415–446. With an appendix by Haynes R. Miller (1984)

    Google Scholar 

  21. Rognes, J.: Topological cyclic homology of the integers at two. J. Pure Appl. Algebra 134(3), 219–286 (1999)

    Article  MATH  MathSciNet  Google Scholar 

  22. Smith, L.: On realizing complex bordism modules. Applications to the stable homotopy of spheres. Am. J. Math. 92, 793–856 (1970)

    Article  MATH  Google Scholar 

  23. Toda, H.: On spectra realizing exterior parts of the Steenrod algebra. Topology 10, 53–65 (1971)

    Article  MATH  MathSciNet  Google Scholar 

  24. Tsalidis, S.: Topological Hochschild homology and the homotopy descent problem. Topology 37(4), 913–934 (1998)

    Article  MATH  MathSciNet  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to John Rognes.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Bökstedt, M., Bruner, R.R., Lunøe-Nielsen, S. et al. On cyclic fixed points of spectra. Math. Z. 276, 81–91 (2014). https://doi.org/10.1007/s00209-013-1187-0

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-013-1187-0

Keywords

Mathematics Subject Classification (2000)

Navigation