Advertisement

Mathematische Zeitschrift

, Volume 275, Issue 3–4, pp 1287–1315 | Cite as

On Galois cohomology of semisimple groups over local and global fields of positive characteristic, III

  • Nguyêñ Quôć Thǎńg
Article

Abstract

We extend some well-known results on Galois cohomology in its relation with weak approximation for connected linear algebraic groups over number fields to the case of global fields of positive characteristic. Some applications are considered.

Mathematics Subject Classification (2000)

Primary 11E72 Secondary 18G50 20G10 

Notes

Acknowledgments

I would like to express my sincerest thanks to the referee for his/her careful reading and many constructive suggestions which help to improve the readability of the paper. This research is funded in part by VIASM and Vietnam National Foundation for Science and Technology Development (NAFOSTED) under grant number 101.01-2011.40.

References

  1. 1.
    Bac, D.P., Thang, N.Q.: On the topology of relative orbits for actions of algebraic groups over complete fields. Proc. Jpn. Acad. Ser. A. 86, 133–138 (2010). http://viasm.edu.vn/preprints-2012/?lang=en
  2. 2.
    Bac, D.P., Thang, N.Q.: On the topology on group cohomology of algebraic groups over complete valued fields (2012) (preprint). http://viasm.edu.vn/preprints-2012/?lang=en
  3. 3.
    Borel, A.: Linear Algebraic Groups, second enlarged ed. GTM. 126. Springer, Berlin (1991)CrossRefGoogle Scholar
  4. 4.
    Borel, A., Harder, G.: Existence of cocompact subgroups of reductive groups over local fields. J. reine und angew. Math. Bd. 298, 53–64 (1978)MathSciNetzbMATHGoogle Scholar
  5. 5.
    Borel, A., Prasad, G.: Addendum: finiteness theorems for discrete subgroups of bounded covolume in semisimple algebraic groups. Pub. Math. IHES 71, 73–77 (1990)Google Scholar
  6. 6.
    Borovoi, M.V.: Abelian Galois cohomology of reductive groups. Mem. Am. Math. Soc. 132(626), viii+50 pp (1998)Google Scholar
  7. 7.
    Borovoi, M., Kunyavskii, B.: With appendix by P.Gille, arithmetical birational invariants of linear algebraic groups over two-dimensional geometric fields. J. Algebra 276, 292–339 (2004)Google Scholar
  8. 8.
    Bruhat et, F., Tits, J.: Groupes réductifs sur un corps local, Chap. III: compléments et applications à la cohomologie galoisienne. J. Fac. Sci. Univ. Tokyo 34, 671–688 (1987)Google Scholar
  9. 9.
    Colliot-Thélène J.-L.: Resolutions flasques des groupes linéaires connexes. J. reine und angew. Math. Bd. 618, 77–133 (2008)Google Scholar
  10. 10.
    Colliot-Thélène, J.-L., Gille, P., Parimala, R.: Arithmetic of linear algebraic groups over 2-dimensional fields. Duke Math. J. 121, 285–341 (2004)MathSciNetCrossRefzbMATHGoogle Scholar
  11. 11.
    Colliot-Thélène, J.-L., Harari et, D., Skorobogatov, A.N.: Compactification équivariante d’un tore (d’après Brylinski et Künnemann). Expo. Math. 23, 161–170 (2005)MathSciNetCrossRefzbMATHGoogle Scholar
  12. 12.
    Colliot-Thélène, J.-L., Sansuc, J.- J.: La R-équivalence sur les tores. Ann. Sci. ENS 10, 175–229 (1977)Google Scholar
  13. 13.
    Colliot-Thélène, J.-L., Sansuc, J.- J.: La descente sur les variétés rationelles, II. Duke Math. J. 54, 375–492 (1987)Google Scholar
  14. 14.
    Conrad, B.: The Structure of Solvable Groups Over Arbitrary Fields (2012) (preprint). http://www.math.stanford.edu/~conrad/
  15. 15.
    Conrad, B.: Finiteness theorems for algebraic groups over function fields. Compos. Math. 148(2), 555–639 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  16. 16.
    Conrad, B., Gabber, O., Prasad, G.: Pseudo-Reductive Groups, New Mathematical Monographs, 17. Cambridge University Press, Cambridge (2010)CrossRefGoogle Scholar
  17. 17.
    Creutz, B.: A Grunwald–Wang type theorems for abelian varieties. Acta Arith. 154, 353–370 (2012)MathSciNetCrossRefzbMATHGoogle Scholar
  18. 18.
    Demazure et, M., Gabriel, P.: Gabriel, Groupes Algébriques, Tome 1. Masson, Paris (1970)Google Scholar
  19. 19.
    Demazure, M., Grothendieck, A., et al.: Schémas en Groupes, Lecture Notes in Math., vol. 151–153. Springer, Berlin (1970)Google Scholar
  20. 20.
    Green, B., Pop, F., Roquette, P.: On Rumely’s local and global principle. Jahres. der Deutsch. Math.-Verein.Bd. 97, 43–74 (1995)Google Scholar
  21. 21.
    Harari, D.: Quelques propriétés d’approximation reliées à cohomologie galoisienne d’un groupe algébrique fini. Bull. Soc. Math. France. 135, 549–564 (2007)MathSciNetzbMATHGoogle Scholar
  22. 22.
    Harder, G.: Eine Bemerkung zum schwachen Approximationssatz. Archiv. der Math. Bd. 9, 365–371 (1968)Google Scholar
  23. 23.
    Harder, G.: Über die Galoiskohomologie der halbeinfacher Matrizengruppen, II. Math. Z. Bd. 92, 396–415 (1966)MathSciNetCrossRefzbMATHGoogle Scholar
  24. 24.
    Harder, G.: Über die Galoiskohomologie der halbeinfacher Matrizengruppen, III. J. reine und angew. Math., Bd. 274/275, 125–138 (1975)MathSciNetGoogle Scholar
  25. 25.
    Hewitt, E., Ross, K.: Abstract Harmonic Analysis, vol. 1. Gründlehren der math. Wiss., Bd. 115, Belin, Göttingen, Heidelberg (1963)Google Scholar
  26. 26.
    Kneser, M.: Strong approximation. In: Algebraic Groups and Discontinuous Subgroups. Proc. Sym. Pure Math., vol. 9, pp. 187–196. AMS. (1966)Google Scholar
  27. 27.
    Kneser, M.: Starken Approximation in algebraischen Gruppen, I. J. reine und angew. Math. Bd. 218, 190–203 (1965)MathSciNetzbMATHGoogle Scholar
  28. 28.
    Kneser, M.: Lectures on Galois Cohomology of Classical Groups. Tata Inst. for Fund. Res., vol. 47, Bombay (1969)Google Scholar
  29. 29.
    Kottwitz, R.: Rational conjugacy classes in reductive groups. Duke Math. J. 49, 785–806 (1982)MathSciNetCrossRefzbMATHGoogle Scholar
  30. 30.
    Kottwitz, R.: Stable trace formula: cuspidal tempered terms. Duke Math. J. 51, 611–650 (1984)MathSciNetCrossRefzbMATHGoogle Scholar
  31. 31.
    Kottwitz, R., Shelstad, D.: Foundations of twisted endoscopy. Astérisque 255, vi+190 pp (1999)Google Scholar
  32. 32.
    Milne, J.: Arithmetic Duality Theorems, 2nd edn. BookSurge, LLC, Charleston (2006)zbMATHGoogle Scholar
  33. 33.
    Oesterlé, J.: Nombre de Tamagawa et groupes unipotents en caractéristique \(p\). Invent. Math. 78, 13–88 (1984)Google Scholar
  34. 34.
    Platonov, V.: The problem of strong approximation and the Kneser-Tits conjecture for algebraic groups. (Russian) Izv. Akad. Nauk SSSR Ser. Mat. 33, 1211–1219 (1969); A supplement. Izv. Akad. Nauk SSSR Ser. Mat. 34, 775–777 (1970)Google Scholar
  35. 35.
    Platonov, V., Rapinchuk, A.: Algebraic Groups and Number Theory. Academic Press, SA (1994)Google Scholar
  36. 36.
    Prasad, G., Rapinchuk, A.S.: On the existence of isotropic forms of semi-simple algebraic groups over number fields with prescribed local behavior. Adv. Math. 207(2), 646–660 (2006)MathSciNetCrossRefzbMATHGoogle Scholar
  37. 37.
    Rosenlicht, M.: Some rationality questions on algebraic groups. Annali di Mat. Pura ed Appl. 43, 25–50 (1957)MathSciNetCrossRefzbMATHGoogle Scholar
  38. 38.
    Sansuc, J.-J.: Groupe de Brauer et arithmétique des groupes algébriques linéaires sur un corps de nombres. J. reine und angew. Math. Bd. 327, 12–80 (1981)MathSciNetzbMATHGoogle Scholar
  39. 39.
    Serre, J.-P.: Cohomologie Galoisienne (cinquième éd.). Lecture Notes in Math., vol. 5, Springer, Berlin (1994) (=“Galois cohomology”, Springer, Berlin (2000))Google Scholar
  40. 40.
    Serre, J.-P.: Lie algebras and Lie groups. Harvard Univ, Lecture Notes, Benjamin (1964). (=Lecture Notes in Math., vol. 1500)Google Scholar
  41. 41.
    Shatz, S.: Cohomology of Artinian group schemes over local fields. Ann. Math. 79, 411–449 (1964)MathSciNetCrossRefzbMATHGoogle Scholar
  42. 42.
    Thǎńg, N.Q.: Weak approximation, R-equivalence and Whitehead groups. In: Algebraic K-Theory (Toronto, ON, 1996), Fields Inst. Commun., vol. 16, pp. 345–354, Am. Math. Soc. Providence, RI (1997)Google Scholar
  43. 43.
    Thǎńg, N.Q.: Weak approximation, Brauer and \(R\)-equivalence in algebraic groups over arithmetical fields. J. Math. Kyoto Univ. 40(2), 247–291 (2000)MathSciNetGoogle Scholar
  44. 44.
    Thǎńg, N.Q.: Weak approximation, Brauer and \(R\)-equivalence in algebraic groups over arithmetical fields. II. J. Math. Kyoto Univ. 42(2), 305–316 (2002)Google Scholar
  45. 45.
    Thǎńg, N.Q.: Corestriction principle in non-abelian Galois cohomology over local and global fields. J. Math. Kyoto Univ. 42, 287–304 (2002)Google Scholar
  46. 46.
    Thǎńg, N.Q.: On Galois cohomology of semisimple groups over local and global fields of positive characteristic. I: Math. Z. Bd. 259, 457–470 (2008)Google Scholar
  47. 47.
    Thǎńg, N.Q.: On Galois cohomology of semisimple groups over local and global fields of positive characteristic. II: Math. Z. Bd. 270, 1057–1065 (2012)Google Scholar
  48. 48.
    Thǎńg, N.Q.: On Galois cohomology and weak approximation of connected reductive groups over fields of positive characteristic. Proc. Jpn. Acad. Ser. A. Math. 87, 203–208 (2011)CrossRefGoogle Scholar
  49. 49.
    Thǎńg, N.Q.: On Galois Cohomology and Weak Approximation of Connected Reductive Groups Over Fields of Positive Characteristic (in preparation)Google Scholar
  50. 50.
    Thǎńg, N.Q.: Equivalent conditions for (Weak) corestriction principle for non-abelian Étale cohomology of group schemes. Vietnam J. Math. 38, 89–116 (2010)MathSciNetGoogle Scholar
  51. 51.
    Thǎńg, N.Q., Tân, N.D.: On the surjectivity of the localisation maps for Galois cohomology of algebraic groups over fields. Commun. Algebra 32, 3169–3177 (2004)CrossRefGoogle Scholar
  52. 52.
    Thǎńg, N.Q., Tân, N.D.: On the Galois and flat cohomology of unipotent groups over local and global function fields. I. J. Algebra 319, 4288–4324 (2008)CrossRefGoogle Scholar
  53. 53.
    Voskresenskiǐ, V.: Algebraic groups and their birational invariants. Transl. AMS, 1992 [see also ”Algebraic” tori (in Russian), Nauka, Moscow 1978]Google Scholar

Copyright information

© Springer-Verlag Berlin Heidelberg 2013

Authors and Affiliations

  1. 1.Institute of MathematicsHanoiVietnam

Personalised recommendations