Skip to main content
Log in

Stable hypersurfaces as minima of the integral of an anisotropic mean curvature preserving a linear combination of area and volume

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We deal with a compact hypersurface \(M\) without boundary immersed in Euclidean space \(R^{n+1}\) with the quotient of anisotropic mean curvatures \(\frac{(r+1)C_{n}^{r+1}H^F_{r+1}}{a(k+1)C_{n}^{k+1}H^F_{k+1}-b}=constant\), for real numbers \(a\) and \(b\). Such a hypersurface is a critical point for the variational problem preserving a linear combination (with coefficientes \(a\) and \(b\)) of the \((k,F)\)-area and the \((n + 1)\)-volume enclosed by \(M\). We show that \(M\) is \((r,k,a,b)\)-stable if and only if, up to translations and homotheties, it is the Wulff shape of \(F\), under some assumptions on \(a\) and \(b\) proved to be sharp. For \(a=0\) and \(b=1\), this gives the known \(r\)-stability of the \(r\)-area for volume preserving variations; if also \(F\equiv 1\) it yields the stability studied by Alencar-do Carmo-Rosenberg and Barbosa-Colares. For \(b=0\) we also prove a characterization of the Wulff shape as a critical point of the \((r,F)\)-area for variations preserving the \((k, F)\)-area, \(0\le k<r<n\), without the \(r\)-stability hypothesis.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Alencar, H., Do Carmo, M., Rosenberg, H.: On the first eigenvalue of linearized operator of the r-mean curvature of a hypersurfaces. Ann. Global Anal. Geom. 11, 387–395 (1993)

    Article  MathSciNet  MATH  Google Scholar 

  2. Barbosa, J.L.M., Colares, A.G.: Stability of hypersurfaces with constant mean curvature. Math. Z. 3, 339–353 (1984)

    Article  Google Scholar 

  3. Barbosa, J.L.M., Colares, A.G.: Stability of hypersurfaces with constant r-mean curvature. Ann. Global Anal. Geom. 15, 277–297 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  4. Brothers, J.E., Morgan, F.: The isoperimetric theorem for general integrands. Mich. Math. J. 41, 419–431 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  5. Cao, L.F., Li, H.: r-minimal submanifolds in space forms. Ann. Global Anal. Geom. 32, 311–341 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  6. Clarenz, U.: The Wulff-shape minimizes an anisotropicWillmore functional. Interfaces Free Bound. 6, 351–359 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  7. Hardy, G., Littlewood, J.E., Polya, G.: Inequalities. Cambridge University, Cambridge (1983)

    Google Scholar 

  8. He, Y.J., Li, H.: A new variational characterization of the Wulff shape. Diff. Geom. App. 26, 377–390 (2008)

    Article  MATH  Google Scholar 

  9. He, Y.J., Li, H.: Integral formulae of Minkowski type and new characterization of the Wulff shape. Acta Math. Sin. 24, 697–704 (2008)

    Article  MATH  Google Scholar 

  10. He, Y.J., Li, H.: Stability of area-preserving variations in space forms. Ann. Global Anal. Geom. 34, 55–68 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  11. He, Y.J., Li, H.: Stability of hypersurfaces with constant r-th anisotropic mean curvature. Ill. J. Math. 52(4), 1301–1314 (2008)

    MATH  Google Scholar 

  12. Hoffman, K., Kunze, R.: Linear Algebra. Prentice-Hall, Englewood cliffs (1961)

    Google Scholar 

  13. Koh, S.E.: A characterization of round spheres. Proc. Am. Math. Soc. 126, 3657–3660 (1998)

    Article  MATH  Google Scholar 

  14. Koiso, M., Palmer, B.: Anisotropic capillary surfaces with wetting energy. Calc. Var. Partial Differ. Equ. 29, 295–345 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  15. Koiso, M., Palmer, B.: Anisotropic umbilic points and Hopfs theorem for surfaces with constant anisotropic mean cur-vature. Indiana Univ. Math. J. 59, 79–90 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Koiso, M., Palmer, B.: Geometry and stability of surfaces with constant anisotropic mean curvature. Indiana Univ. Math. J. 54(6), 1817–1852 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  17. Koiso, M., Palmer, B.: Stability of anisotropic capillary surfaces between two parallel planes. Cal. Var. Partial Differ. Equ. 25, 275–298 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  18. Koiso, M., Palmer, B.: Uniqueness theorems for stable anisotropic capillary surfaces. Siam J. Math. Anal. 39, 721–741 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  19. Li, H.: Global rigidity theorems of hypersurfaces. Ark. Math. 35, 327–351 (1997)

    Article  MATH  Google Scholar 

  20. Li, H.: Hypersurfaces with constant scalar curvature in space forms. Math. Ann. 305, 665–672 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  21. Montiel, S., Ros, A.: Compact hypersurfaces: the Alexandrov theorem for higher order mean curvatures. Differ. Geom. (Pitman monogr. surveys pure appl. math.) 52, 279–296 (1991)

    Google Scholar 

  22. Onat, L.: Some characterizations of the Wulff shape. C. R. Math. Acad. Sci. Paris 348(17–18), 977–1000 (2010)

    MathSciNet  Google Scholar 

  23. Palmer, B.: Stability of the Wulff shape. Proc. Am. Math. Soc. 126, 3661–3667 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  24. Taylor, J.: Crystalline variational problems. Bull. Am. Math. Soc. 84, 568–588 (1978)

    Article  MATH  Google Scholar 

  25. Winklmann, S.: A note on the stability of the Wulff shape. Arch. Math. 87, 272–279 (2006)

    Article  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to J. Floriano da Silva.

Additional information

A. Gervasio Colares was partially supported by CNPq, Brazil.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Colares, A.G., da Silva, J.F. Stable hypersurfaces as minima of the integral of an anisotropic mean curvature preserving a linear combination of area and volume. Math. Z. 275, 595–623 (2013). https://doi.org/10.1007/s00209-013-1149-6

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-013-1149-6

Keywords

Mathematics Subject Classification (2000)

Navigation