Skip to main content
Log in

On the classification of finite dimensional irreducible modules for affine BMW algebras

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

In this paper, we classify the finite dimensional irreducible modules for affine BMW algebra over an algebraically closed field with arbitrary characteristic.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Ariki, S.: On the classification of simple modules for cyclotomic Hecke algebras of type \(G(m, 1, n)\) and Kleshchev multipartitions. Osaka J. Math. 38, 827–837 (2001)

    MathSciNet  MATH  Google Scholar 

  2. Ariki, S., Koike, K.: A Hecke algebra of \(({ {Z}}/r{ {Z}})\wr {\mathfrak{S}}_n\) and construction of its irreducible representations. Adv. Math. 106, 216–243 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  3. Ariki, S., Jacon, N., Lecouvey, C.: The modular branching rule for affine Hecke algebras of type A. Adv. Math. 228(1), 481–526 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  4. Ariki, S., Mathas, A.: The number of simple modules of the Hecke algebra of type \(G(r, 1, n)\). Math. Zeit. 233, 601–623 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  5. Ariki, S., Mathas, A., Rui, H.: Cyclotomic Nazarov-Wenzl algebras. Nagoya Math. J. 182, 47–134 (2006). (Special issue in honor of Prof. G. Lusztig’s sixty birthday)

    MathSciNet  MATH  Google Scholar 

  6. Birman, J.S., Wenzl, H.: Braids, link polynomials and a new algebra. Trans. Am. Math. Soc. 313, 249–273 (1989)

    Article  MathSciNet  MATH  Google Scholar 

  7. Bernstein, J., Zelevinsky, A.V.: Induced representations of reductive p-adic groups. Ann. Sci. E.N.S 10, 441–472 (1977)

    Google Scholar 

  8. Chriss, N., Ginzburg, V.: Representation Theory and Complex Geometry. Birkhaeuser, Boston (1997)

    MATH  Google Scholar 

  9. Dipper, R., James, G., Mathas, A.: Cyclotomic \(q\)-Schur algebras. Math. Zeit. 229, 385–416 (1999)

    Article  MathSciNet  Google Scholar 

  10. Daugherty Z., Ram A., Virk R.: Affine and degenerate affine BMW algebras: The center. (2011) (arXiv:1105.4207)

  11. Enyang, J.: Cellular bases for the Brauer and Birman–Murakami–Wenzl algebras. J. Algebra 281, 413–449 (2004)

    Article  MathSciNet  MATH  Google Scholar 

  12. Enyang, J.: Specht modules and semisimplicity criteria for Brauer and Birman–Murakami–Wenzl algebras. J. Alg. Comb. 26, 291–341 (2007)

    Article  MathSciNet  MATH  Google Scholar 

  13. Goodman, F.M.: Cellurality of cyclotomic Birman–Wenzl–Murakami Algebras. J. Algebra 321, 3299–3320 (2009)

    Google Scholar 

  14. Goodman, F.: Remarks on cyclotomic and degenerate cyclotomic BMW algebras. J. Algebra 364, 1–37 (2012)

    Article  MathSciNet  Google Scholar 

  15. Goodman, F.: Comparison of admissibility conditions for cyclotomic Birman–Wenzl–Murakami algebras. J. Pure Appl. Algebra 214(11), 2009–2016 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  16. Goodman, F., Hauschild, H.: Affine Birman–Wenzl–Murakami algebras and tangles in the solid torus. Fund. Math. 190, 77–137 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  17. Graham, J.J., Lehrer, G.I.: Cellular algebras. Invent. Math. 123, 1–34 (1996)

    Article  MathSciNet  MATH  Google Scholar 

  18. Green J.A.: Polynomial representations of GLn, Second corrected and augmented edition. With an appendix on Schensted correspondence and Littelmann paths by K. Erdmann, Green and M. Schocker. Lecture Notes in Math., vol. 830. Springer, Berlin (2007)

  19. Häring-Oldenburg, R.: Cyclotomic Birman–Murakami–Wenzl algebras. J. Pure Appl. Algebra 161, 113–144 (2001)

    Google Scholar 

  20. Kazhdan, D., Lusztig, G.: Proof of the Deligne-Langlands conjecture for Hecke algebras. Invent. Math. 87(1), 153–215 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  21. Murakami, J.: The Kauffman polynomial of links and representaion theory. Osaka J. Math. 24, 745–758 (1987)

    MathSciNet  MATH  Google Scholar 

  22. Nazarov, M.: Young’s orthogonal form for Brauer’s centralizer algebra. J. Algebra 182, 664–693 (1996)

    Google Scholar 

  23. Orellana R., Ram A.: Affine braids, Markov traces and the category \({\cal O}\). Algebraic groups and homogeneous spaces, pp. 423–473. Tata Institute of Fundamental Research of Studying Mathematics, Tata Institute of Fundamental Research, Mumbai (2007)

  24. Rogawski, J.D.: On modules over the Hecke algebra of a \(p\)-adic group. Invent. Math. 79, 443–465 (1985)

    Google Scholar 

  25. Rui, H., Si, M.: On the structure of cyclotomic Nazarov–Wenzl algebras. J. Pure Appl. Algebra 212(10), 2209–2235 (2008)

    Article  MathSciNet  MATH  Google Scholar 

  26. Rui, H., Si, M.: Gram determinants and semisimplicity criteria for Birman–Wenzl algebras. J. Reine. Angew. Math. 631, 153–180 (2009)

    MathSciNet  MATH  Google Scholar 

  27. Rui, H., Si, M.: Blocks of Birman–Murakami–Wenzl algebras. Int. Math. Res. Notes 2, 452–486 (2011)

    MathSciNet  Google Scholar 

  28. Rui, H., Si, M.: Non-vanishing Gram determinants for cyclotomic NW and BMW algebras. J. Algebra 335, 188–219 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  29. Rui, H., Si, M.: The representations of cyclotomic BMW algebras. II. Algebra Representation Theory 15(3), 551–579 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  30. Rui, H., Xu, J.: The representations of cyclotomic BMW algebras. J. Pure Appl. Algebra. 213, 2262–2288 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  31. Vazirani, M.: Parameterizing Hecke algebra modules: Bernstein–Zelevinsky multisegments, Kleshchev multipartitions, and crystal graphs. Transform. Groups 7(3), 267–303 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  32. Wenzl, H.: Quantum groups and subfactors of type \(B, C,\) and \(D\). Comm. Math. Phys. 133, 383–432 (1988)

    Article  MathSciNet  Google Scholar 

  33. Wilcox, S., Yu, S.: The cyclotomic BMW algebra associated with the two string type B braid group. Comm. Algebra 39, 4428–4446 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  34. Wilcox S., Yu S.: On the cellularity of the cyclotomic Birman-Murakami-Wenzl algebras. J. London Math. Soc.doi:10.1112/jlms/jds019 (2012).

  35. Wilcox S., Yu S.: On the freeness of the cyclotomic BMW algebras: admissibility and an isomorphism with the cyclotomic Kauffman tangle algebra (2009) (preprint)

  36. Xi, C.C.: On the quasi-heredity of Birman–Wenzl algebras. Adv. Math. 154(2), 280–298 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  37. Xi, N.: Representations of affine Hecke algebras and based rings of affine Weyl groups. J. Am. Math. Soc 20(1), 211–217 (2007)

    Article  MATH  Google Scholar 

  38. Zelevinsky, A.V.: Induced representations of reductive \(p\)-adic groups, II. On irreducible representations of \(GL_n\). Annal. Sci. E.N.S. 13, 165–210 (1980)

    MathSciNet  MATH  Google Scholar 

Download references

Acknowledgments

The author wishes to thank the referees for their detailed comments.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hebing Rui.

Additional information

The author was supported in part by NSFC and the Science and Technology Commission of Shanghai Municipality 11XD1402200.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Rui, H. On the classification of finite dimensional irreducible modules for affine BMW algebras. Math. Z. 275, 389–401 (2013). https://doi.org/10.1007/s00209-012-1140-7

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-012-1140-7

Keywords

Navigation