Skip to main content
Log in

Integration of semialgebraic functions and integrated Nash functions

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

When integrating semialgebraic functions one has to leave the semialgebraic setting. For example, one gets the global logarithm and iterated antiderivatives of algebraic power series such as the arctangent. We show that it is enough to enlarge the semialgebraic functions by these functions to completely describe parameterized integrals of semialgebraic functions. To realize this we close the rings of algebraic power series in arbitrary dimension under taking antiderivatives. We analyze these rings profoundly. In particular we show that the Weierstrass division theorem and the Weierstrass preparation theorem hold. This allows us to apply model theoretic results to obtain an explicit description of parameterized integrals of semialgebraic functions. Finally, we investigate the structure generated by the integrated algebraic power series.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. Bauer, H.: Measure and Integration theory. de Gruyter Studies in Mathematics. Walter de Gruyter, Germany (2001)

    Book  Google Scholar 

  2. Bochnak, J., Coste, M., Roy, M.-F.: Real algebraic geometry. Ergebnisse der Mathematik und ihrer Grenzgebiete 36, Springer, Heidelberg (1998)

  3. Cartan, H.: Differential forms. Translated from the French. Houghton Mifflin Co., Boston (1970)

    Google Scholar 

  4. Cluckers, R., Miller, D.: Stability under integration of sums of products of real globally subanalytic functions and their logarithms. Duke Math. J. 156(2), 311–348 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  5. Comte, G., Lion, J.-M., Rolin, J.-P.: Nature log-analytique du volume des sous-analytiques. Illinois J. Math. 44(4), 884–888 (2000)

    MathSciNet  MATH  Google Scholar 

  6. Denef, J., Lipshitz, L.: Ultraproducts and approximation in local rings. II. Math. Ann. 253(1), 1–28 (1980)

    Article  MathSciNet  MATH  Google Scholar 

  7. van den Dries, L.: On the elementary theory of restricted elementary functions. J. Symbolic Logic 53(3), 796–808 (1988)

    Article  MathSciNet  MATH  Google Scholar 

  8. van den Dries, L., Miller, C.: Extending Tamm’s theorem. Ann. Inst. Fourier 44(5), 1367–1395 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  9. Gunning, R., Rossi, H.: Analytic functions of several complex variables. Reprint of the original AMS Chelsea Publishing, Providence, RI (1965) 2009

  10. Kaiser, T.: First order tameness of measures. Ann. Pure Appl. Logic 163(12), 1903–1927 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  11. Kontsevich, M., Zagier, D.: Periods. Mathematics unlimited: and beyond, pp. 771–808. Springer, Berlin (2001)

  12. Lion, J.-M., Rolin, J.-P.: Théorème de préparation pour les fonctions logarithmico-exponentielles. Ann. Inst. Fourier 47(3), 859–884 (1997)

    Article  MathSciNet  MATH  Google Scholar 

  13. Lion, J.-M., Rolin, J.-P.: Intégration des fonctions sous-analytiques et volumes des sous-ensembles sous-analytiques. Ann. Inst. Fourier 48(3), 755–767 (1998)

    Article  MathSciNet  MATH  Google Scholar 

  14. Miller, D.: A preparation theorem for Weierstrass systems. Trans. Amer. Math. Soc. 358(10), 4395–4439 (2006)

    Article  MathSciNet  MATH  Google Scholar 

  15. Ruiz, J.: The basic theory of power series. Advanced lectures in mathematics. Vieweg, Germany (1993)

    Book  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Tobias Kaiser.

Additional information

The author was supported in part by DFG KA 3297/1-1.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Kaiser, T. Integration of semialgebraic functions and integrated Nash functions. Math. Z. 275, 349–366 (2013). https://doi.org/10.1007/s00209-012-1138-1

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-012-1138-1

Keywords

Mathematics Subject Classification (2000)

Navigation