Skip to main content
Log in

The subelliptic heat kernel on the CR sphere

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

We study the heat kernel of the sub-Laplacian \(L\) on the CR sphere \(\mathbb{S }^{2n+1}\). An explicit and geometrically meaningful formula for the heat kernel is obtained. As a by-product we recover in a simple way the Green function of the conformal sub-Laplacian \(-L+n^2\) that was obtained by Geller (J Differ Geom 15:417–435, 1980), and also get an explicit formula for the sub-Riemannian distance. The key point is to work in a set of coordinates that reflects the symmetries coming from the fibration \(\mathbb{S }^{2n+1} \rightarrow \mathbb{CP }^n\).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Subscribe and save

Springer+ Basic
$34.99 /Month
  • Get 10 units per month
  • Download Article/Chapter or eBook
  • 1 Unit = 1 Article or 1 Chapter
  • Cancel anytime
Subscribe now

Buy Now

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Notes

  1. We call north pole the point with complex coordinates \(z_1=0,\ldots , z_{n+1}=1\), it is therefore the point with real coordinates \((0,\ldots ,0,1,0)\).

References

  1. Agrachev, A., Boscain, U., Gauthier, J.P., Rossi, F.: The intrinsic hypoelliptic Laplacian and its heat kernel on unimodular Lie groups. J. Funct. Anal. 256(8), 2621–2655 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  2. Barilari D.: Trace heat kernel asymptotics in 3D contact sub-Riemannian geometry, arXiv:1105.1285.

  3. Baudoin, F., Bonnefont, M.: The subelliptic heat kernel on \(SU(2)\): representations, asymptotics and gradient bounds. Math. Z. 263, 647–672 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Bauer, R.O.: Analysis of the horizontal Laplacian for the Hopf fibration. Forum Math. 17(6), 903–920 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  5. Beals, R., Gaveau, B., Greiner, P.C.: Hamilton-Jacobi theory and the heat kernel on Heisenberg groups. J. Math. Pures Appl. 79(7), 633–689 (2000)

    MathSciNet  MATH  Google Scholar 

  6. Branson, T.P., Fontana, L., Morpurgo, C.: Moser-Trudinger and Beckner-Onofri’s inequalities on the CR sphere. Ann. Math. 177, 1–52 (2013)

    Google Scholar 

  7. Bonnefont, M.: The subelliptic heat kernel on SL(2, R) and on its universal covering: integral representations and some functional inequalities. Potential Anal. 36(2), 275–300 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  8. Cowling, M.G., Klima, O., Sikora, A.: Spectral Multipliers for the Kohn sublaplacian on the sphere in \({\mathbb{C}}^n\). Trans. Amer. Math. Soc. 363(2), 611–631 (2011)

    Article  MathSciNet  MATH  Google Scholar 

  9. Dragomir S., Tomassini G.: Differential geometry and analysis on CR manifolds, Birkhäuser, vol. 246 (2006)

  10. Eldredge, N.: Gradient estimates for the subelliptic heat kernel on H-type groups. J. Funct. Anal. 258, 504–533 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  11. Gaveau, B.: Principe de moindre action, propagation de la chaleur et estiméees sous elliptiques sur certains groupes nilpotents. Acta Math. 139(1), 95–153 (1977)

    Article  MathSciNet  MATH  Google Scholar 

  12. Geller, D.: The Laplacian and the Kohn Laplacian for the sphere. J. Differ. Geom. 15, 417–435 (1980)

    Google Scholar 

  13. Léandre, R.: Majoration en temps petit de la densité d’une diffusion dégénérée. Probab. Theory Relat. Fields 74(2), 289–294 (1987)

    Article  MATH  Google Scholar 

  14. Léandre, R.: Minoration en temps petit de la densité d’une diffusion dégénérée. J. Funct. Anal. 74(2), 399–414 (1987)

    Article  MathSciNet  MATH  Google Scholar 

  15. Li, H.Q.: Estimation optimale du gradient du semi-groupe de la chaleur sur le groupe de Heisenberg. Jour. Func. Anal. 236, 369–394 (2006)

    Article  MATH  Google Scholar 

  16. Lieb, E., Frank R.: Sharp constants in several inequalities on the Heisenberg group., arXiv:1009.1410, To appear in, Ann. Math (2012)

  17. Molina, M, Markina I. : Sub-Riemannian geodesics and heat operator on odd dimensional spheres, arXiv:1008.5265, Anal. Math. Phys. 2(2), 123–147 (2012)

    Google Scholar 

  18. Staubach, W.: Wiener path integrals and the fundamental solution for the Heisenberg Laplacian. J. Anal. Math. 91, 389–400 (2003)

    Article  MathSciNet  MATH  Google Scholar 

  19. Taylor, M.E.: Partial differential equations. II, Applied Mathematical Sciences 116, Springer, New York (1996)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fabrice Baudoin.

Additional information

F. Baudoin supported in part by NSF Grant DMS 0907326.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Baudoin, F., Wang, J. The subelliptic heat kernel on the CR sphere. Math. Z. 275, 135–150 (2013). https://doi.org/10.1007/s00209-012-1127-4

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-012-1127-4

Keywords

Navigation