Skip to main content
Log in

Compactification de Chabauty de l’espace des sous-groupes de Cartan de \({\text{ SL}}_n(\mathbb{R })\)

  • Published:
Mathematische Zeitschrift Aims and scope Submit manuscript

Abstract

Let \(G\) be a real semisimple Lie group with finite center, with a finite number of connected components and without compact factor. We are interested in the homogeneous space of Cartan subgroups of \(G\), which can be also seen as the space of maximal flats of the symmetric space of \(G\). We define its Chabauty compactification as the closure in the space of closed subgroups of \(G\), endowed with the Chabauty topology. We show that when the real rank of \(G\) is 1, or when \(G={\text{ SL}}_3(\mathbb{R })\) or \({\text{ SL}}_4(\mathbb{R })\), this compactification is the set of all closed connected abelian subgroups of dimension the real rank of \(G\), with real spectrum. And in the case of \({\text{ SL}}_3(\mathbb{R })\), we study its topology more closely and we show that it is simply connected.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Fig. 1
Fig. 2

Similar content being viewed by others

References

  1. Allcock, D.: Reflections groups on the octave hyperbolic plane. J. Algebra 213, 467–498 (1999)

    Article  MathSciNet  MATH  Google Scholar 

  2. Bochnak, J., Coste, M., Roy, M.-F.: Géométrie algébrique réelle. Ergebnisse der Mathematik und ihrer Grenzgebiete (3). Springer, Berlin (1987)

  3. Chen, S.-S., Greenberg, L.: Hyperbolic spaces. In: Ahlfors, L.V., et al. (eds.) A collection of papers dedicated to Lipman Bers Contributions to Analysis, pp. 49–87. Academic Press, New York (1974)

  4. Chabauty, C.: Limite d’ensembles et géométrie des nombres. Bull. Soc. Math. France 78, 143–151 (1950)

    MathSciNet  MATH  Google Scholar 

  5. Caprace, P.-E., Lécureux, J.: Combinatorial and group-theoretic compactifications of buildings. à paraître dans, Ann. Inst. Fourier (2009)

  6. de la Harpe, P. (2008) Spaces of closed subgroups of locally compact groups. arXiv:0807.2030v2

  7. Fulton, W., MacPherson, R.: A compactification of configuration spaces. Ann Math. 139, 183–225 (1994)

    Article  MathSciNet  MATH  Google Scholar 

  8. Guivarc’h, Y., Ji, L., Taylor, J.C.: Compactifications of symmetric spaces. Progr. Math. 156 Birkhäuser (1998)

  9. Guivarc’h, Y., Rémy, B.: Group-theoretic compactification of Bruhat-Tits buildings. Ann. Sci. École Norm. Sup. 39, 871–920 (2006)

    MATH  Google Scholar 

  10. Haettel, T.: Compactification de Chabauty des espaces symétriques de type non compact. J Lie Theor 20, 437–468 (2010)

    MathSciNet  MATH  Google Scholar 

  11. Haettel, T.: Visual limits of flats in symmetric spaces and Euclidean buildings., Prépub. Univ. Orsay, arXiv:1206.1227 (2012)

  12. Iliev, A., Manivel, L.: Severi varieties and their varieties of reductions. J. de Crelle 585, 93–139 (2005)

    Article  MathSciNet  MATH  Google Scholar 

  13. Iliev, A., Manivel, L.: Varieties of reduction for gln. In: Ciliberto, C., Geramita, A.V., Harbourne, B., Miro-Roig, R., Ranestad, K. (eds.) Projective Varieties with Unexpected Properties, pp. 287–316. Walter de Gruyter, Berlin (2005)

    Google Scholar 

  14. Kassel, F.: Deformation of proper actions on reductive homogeneous spaces. Math. Ann. 353, 599–632 (2012)

    Article  MathSciNet  MATH  Google Scholar 

  15. Kobayashi, T.: On discontinuous group actions on non-Riemannian homogeneous spaces. Sugaku Expositions 22, 1–19 (2009)

    MathSciNet  Google Scholar 

  16. Le Barbier Grünewald, M.: Examples of varieties of reductions of small rank. http://www.uni-bonn.de/lbg/public/michi-redex.pdf. (2011)

  17. Le Barbier Grünewald, M.: The variety of reductions for a reductive symmetric pair. Transform Group 16, 1–26 (2011)

    Article  MATH  Google Scholar 

  18. Margulis, G.: Oppenheim conjecture. Fields Medallists’ lectures, dans World Sci. Ser. 20th Century Math., vol. 5, pp. 272–327 World Sci. Publ. (1997)

  19. Maucourant, F.: A non-homogeneous orbit closure of a diagonal subgroup. Ann Math 171, 557–570 (2010)

    Article  MathSciNet  MATH  Google Scholar 

  20. Moore, C.C.: Amenable subgroups of semi-simple groups and proximal flows. Isr J Math 34, 121–138 (1979)

    Article  MATH  Google Scholar 

  21. Oh, H., Witte, D.: Compact Clifford-Klein Forms of Homogeneous Spaces of \((2, n)\). Geom Dedi 89, 25–57 (2002)

    Article  MathSciNet  MATH  Google Scholar 

  22. Parker, J.R.: Hyperbolic Spaces. The Jyväskylä Notes (2007)

  23. Satake, I.: On representations and compactifications of symmetric Riemannian spaces. Ann Math 71, 77–110 (1960)

    Article  MathSciNet  MATH  Google Scholar 

  24. Winternitz, P., Zassenhaus, H.: The structure of maximal abelian subalgebras of classical Lie and Jordan algebras. In: XIIIth international olloquium on group theoretical methods in physics. World Sci. Publishing, College Park (1984)

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Thomas Haettel.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Haettel, T. Compactification de Chabauty de l’espace des sous-groupes de Cartan de \({\text{ SL}}_n(\mathbb{R })\) . Math. Z. 274, 573–601 (2013). https://doi.org/10.1007/s00209-012-1086-9

Download citation

  • Received:

  • Accepted:

  • Published:

  • Issue Date:

  • DOI: https://doi.org/10.1007/s00209-012-1086-9

Keywords

Navigation