Hardy spaces and boundary conditions from the Ising model

Abstract

Functions in Hardy spaces on multiply-connected domains in the plane are given an explicit characterization in terms of a boundary condition inspired by the two-dimensional Ising model. The key underlying property is the positivity of a certain operator constructed inductively on the number of components of the boundary.

This is a preview of subscription content, access via your institution.

References

  1. 1

    Belavin A., Polyakov A., Zamolodchikov A.: Infinite conformal symmetry in two-dimensional quantum field theory. Nucl. Phys. B 241, 333 (1984)

    MATH  Article  MathSciNet  Google Scholar 

  2. 2

    D’Hoker E., Phong D.H.: The geometry of string perturbation theory. Rev. Mod. Phys. 60, 917–1065 (1988)

    Article  MathSciNet  Google Scholar 

  3. 3

    D’Hoker E., Phong D.H.: Conformal scalar fields and chiral splitting on super Riemann surfaces. Commun. Math. Phys 125, 469–513 (1989)

    MATH  Article  MathSciNet  Google Scholar 

  4. 4

    Date, E., Jimbo, M., Kashiwara, M., Miwa, T. Transformation groups for soliton equations. In: Jimbo, M., Miwa, T. (eds.) Proceedings of RIMS Symposium, pp. 39–120, World Scientific, Singapore (1983)

  5. 5

    Di Francesco P., Mathieu P., Senechal D.: Conformal Field Theory. Springer, New York (1997)

    MATH  Book  Google Scholar 

  6. 6

    Earle C.J., Marden A.: On Poincaré Series with application to H p spaces on bordered Riemann surfaces. Ilinois J. Math. 13, 202–219 (1969)

    MATH  MathSciNet  Google Scholar 

  7. 7

    Fay, J.: Theta functions on Riemann surfaces. Lecture Notes Series, vol. 352, Springer, New York (1973)

  8. 8

    Fisher S.D.: Function Theory on Planar Domains: A Second Course in Complex Analysis. Dover Publications, New York (2007)

    MATH  Google Scholar 

  9. 9

    Hongler, C.: Conformal invariance of Ising model correlations, PhD thesis, University of Geneva (2010)

  10. 10

    Hongler, C., Kytölä, K.: Ising interfaces and free boundary conditions. arXiv:1108.0643

  11. 11

    Hongler, C., Smirnov, S.: The energy density in the planar Ising model. Acta Math. arXiv:1008.2645 (to appear)

  12. 12

    Izyurov, K., Holomorphic spinor observables and interfaces in the critical Ising model, PhD thesis, University of Geneva, (2011)

  13. 13

    Muskhelishvili, N.I.: Singular Integral Equations. Noordhoff, Groningen (based on the second Russian edition published in 1946) (1953)

  14. 14

    Schramm, O.: Conformally invariant scaling limits: an overview and a collection of problems. In: International Congress of Mathematicians, vol. I, pp. 513–554. European Mathematical Society, Zurich (2007)

  15. 15

    Smirnov, S.: Towards conformal invariance of 2D lattice models. In: Sanz-Solé, M., et al. (eds.) Proceedings of the International Congress of Mathematicians (ICM), Madrid, Spain, August 22–30, Vol. II: Invited lectures, pp. 1421–1451 European Mathematical Society (EMS), Zurich (2006)

  16. 16

    Smirnov S.: Conformal invariance in random cluster models. I. Holomorphic fermions in the Ising model. Ann. Math. 172(2), 1435–1467 (2010)

    MATH  Article  Google Scholar 

  17. 17

    Smirnov, S.: Discrete complex analysis and probability. Proceedings of the ICM, Hyderabad, India (to appear)

  18. 18

    Zygmund A.: Trigonometric Series, 2nd edn. Cambridge University Press, Cambridge (1968)

    Google Scholar 

Download references

Author information

Affiliations

Authors

Corresponding author

Correspondence to Duong H. Phong.

Rights and permissions

Reprints and Permissions

About this article

Cite this article

Hongler, C., Phong, D.H. Hardy spaces and boundary conditions from the Ising model. Math. Z. 274, 209–224 (2013). https://doi.org/10.1007/s00209-012-1065-1

Download citation

Keywords

  • Riemann Surface
  • Line Bundle
  • Holomorphic Function
  • Unit Disk
  • Hardy Space