Mathematische Zeitschrift

, Volume 273, Issue 3–4, pp 935–980 | Cite as

The Collet–Eckmann condition for rational functions on the Riemann sphere

Article

Abstract

We show that the set of Collet–Eckmann maps has positive Lebesgue measure in the space of rational maps on the Riemann sphere for any fixed degree d ≥ 2.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Benedicks, M.: The parameter selection for H énon maps and similar dynamical systems. New directions in dynamical systems, Ryukoku Univ and Kyoto University (2002) http://ndds.math.h.kyoto-u.ac.jp/
  2. 2.
    Benedicks M., Carleson L.: On iterations of 1−ax 2 on (−1,1). Ann. Math. (2) 122(1), 1–25 (1985)MathSciNetMATHCrossRefGoogle Scholar
  3. 3.
    Benedicks M., Carleson L.: The dynamics of the H énon map. Ann. Math. (2) 133(1), 73–169 (1991)MathSciNetMATHCrossRefGoogle Scholar
  4. 4.
    Brieskorn E., Knörrer H.: Plane algebraic curves. Birkhäuser Verlag, Basel (1986)MATHGoogle Scholar
  5. 5.
    Carleson L., Gamelin T.W.: Complex dynamics. Universitext: Tracts in Mathematics. Springer, New York (1993)CrossRefGoogle Scholar
  6. 6.
    Graczyk J., Smirnov S.: Non-uniform hyperbolicity in complex dynamics. Invent. Math. 175, 335–415 (2009)MathSciNetMATHCrossRefGoogle Scholar
  7. 7.
    Phillip, G., Joseph, H.: Principles of Algebraic Geometry. Wiley Classics Library. Wiley, New York (1994) (reprint of the 1978 original)Google Scholar
  8. 8.
    Milnor J.: Dynamics in one complex variable, volume 160 of Annals of Mathematics Studies, 3rd edn. Princeton University Press, Princeton (2006)Google Scholar
  9. 9.
    Feliks, P.: On measure and Hausdorff dimension of Julia sets of holomorphic Collet–Eckmann maps. In: International conference on dynamical systems (Montevideo, 1995), volume 362 of Pitman Res. Notes Math. Ser., pp. 167–181. Longman, Harlow (1996)Google Scholar
  10. 10.
    Rees M.: Positive measure sets of ergodic rational maps. Ann. Sci. École Norm. Sup. (4) 19(3), 383–407 (1986)MathSciNetMATHGoogle Scholar
  11. 11.
    Mitsuhiro, S.: On a theorem of M. Rees for matings of polynomials. In: The Mandelbrot set, theme and variations, volume 274 of London Math. Soc. Lecture Note Ser., pp. 289–305. Cambridge University Press, Cambridge (2000)Google Scholar
  12. 12.
    Mitsuhiro, S., Tan, L.: An alternative proof of Mañé’s theorem on non-expanding Julia sets. In: The Mandelbrot set, theme and variations, volume 274 of London Math. Soc. Lecture Note Ser., pp. 265–279. Cambridge University Press, Cambridge (2000)Google Scholar

Copyright information

© Springer-Verlag 2012

Authors and Affiliations

  1. 1.Department of MathematicsUppsala UniversityUppsalaSweden

Personalised recommendations